
Effective Sample Size of Spatial Process Models

Ronny Vallejos∗, Felipe Osorio
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Abstract

This paper focuses on the reduction of sample sizes due to the effect of autocorrelation
for the most common models used in spatial statistics. This work is an extension of
a simple illustration highlighted in several books for an autoregressive-type correlation
structure. The paper briefly reviews existing proposals to quantify the effective sample
size and proposes a new definition that is a function of the correlation structure, sample
size, and dimension of the space where the coordinates are defined. It describes the prop-
erties of and explicit expression for the effective sample size for processes with patterned
correlation matrices, including elliptical contoured distributions. The estimation of the
effective sample size is achieved using restricted maximum likelihood. Additionally, the
paper describes the monotonicity of the effective sample size when two random points are
uniformly distributed on the unit sphere and includes several Monte Carlo simulations
to explore monotonic features of the effective sample size and to compare its behavior
with respect to other proposals. Finally, this paper analyzes two real datasets, and the
discussion includes topics that should be addressed in further research.

Key words: Spatial process, Effective sample size, Elliptically contoured distributions,
REML estimator

1. Introduction

Spatial analysis has developed considerably in recent decades. Particularly, problems
such as determining sample sizes and how and where to sample have been studied in many
different contexts. In spatial statistics, it is well known that as the spatial autocorrelation
latent in georeferenced data increases, the amount of duplicated information in these data
also increases. This property has many implications for the subsequent analysis of spatial
data. A similar problem has been discussed by Box (1954a, 1954b) for approximating the
distribution of a quadratic form in the normal random vector by a chi-square distribution
that has the same first two moments. Clifford et al. (1989) used this approach to suggest
effective degrees of freedom in a modified t-test designed to assess the association between
two spatial processes; a detailed discussion can be found in Dutilleul (1993). An extension,
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in the context of multiple correlation, involving one spatial process and several others is
described in Dutilleul et al. (2008). A study on the effective number of spatial degrees
of freedom of a time-varying field was conducted by Bretherton et al. (1999). The effec-
tive sample size of two glaciers determined by analyzing the spatial correlation between
point mass balance measurements is discussed in Cogley (1999). The relative information
content of the mean for various hydrologic series is addressed in Matalas and Langbein
(1962). The method required to determine the number of independent observations in an
autocorrelated time series is noted by Bayley and Hammersley (1946).

The effect of spatial correlation on statistical inference, more specifically the problem
of how many uncorrelated samples provide the same precision as correlated observations,
is mentioned and illustrated in classical spatial statistics books such as Cressie (1993),
Haining (1990), and Schabenberger and Gotway (2005). Griffith (2005) developed a new
method to determine the effective sample size for normally distributed georeferenced data
for a single mean and also provided extensions for multiple sample means. Griffith’s
proposal is based on a regression model for which the expected value of the estimated
variance of the response variable is calculated. Using this expression and the variance
inflation factor, an effective sample size formula is obtained as a function of the covariance
structure of the model. Other model-based alternatives and extensions to two processes
are also provided. Griffith (2008) later used this method with soil samples from Syracuse,
NY. Another approach based on the integral range for which the estimation process is
philosophically different (i.e., it is not based on the likelihood) from that mentioned above
is described in Lantuejoul (1991).

This paper addresses the following problem: if we have n data points located on a
general grid in an r-dimensional space, what is the effective sample size (ESS) associated
with these points? If the observations are independent and if a regional mean is being
estimated, then, given a suitable definition, the answer is n. Intuitively, when perfect
positive spatial autocorrelation prevails, ESS should be equal to 1; with dependence,
less than n. Getis and Ord (2000) studied this type of reduction of information in the
context of multiple testing of local indices of spatial autocorrelation. Note that the general
approach to addressing this question does not depend on the data values; however, it does
depend on the spatial locations of the points in the range of the spatial process and on
the spatial dimension. We suggest a definition of the spatial effective sample size based
on an alternative way of calculating the reduction of information due to the existing
spatial association in the data. Our definition can be explored analytically given certain
assumptions. We explore certain patterned correlation matrices that commonly arise in
spatial statistics, study the effective sample size for a single normal process and extended
it to CAR and SAR processes. Additionally, we consider a single mean process with
errors that have an elliptically contoured distribution. We present theoretical results and
examples to illustrate the features of our proposed method.

Estimation of the effective sample size is addressed via the restricted maximum likeli-
hood estimator for the normal and elliptical cases. We discuss both how sampling design
affects effective sample size and how to select a sample after sample size has been reduced
to account for autocorrelation, highlighting that effective sample size is intimately related
to the way in which data are collected. Additionally, we carried out numerical experiments
and Monte Carlo simulations to measure the performance of the estimators of effective
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sample size and determined the effect of the selected variogram model. We use two ex-
amples with real data to illustrate the practical scope of our proposal. The first dataset
consists of georeferenced samples from a contaminated area in Utah, USA, and the second
dataset consists of forest variables based on a study of Pinus radiata plantations in south-
ern Chile. In both cases, we calculate the effective sample size to explore the reduction of
the sample size.

This paper is organized as follows. In Section 2, a motivation is given in the context
of a time series previously discussed by Cressie (1993) and an extension to a spatial
process is considered to illustrate the effect of dimension. Section 3 develops the effective
sample size for normal, CAR, SAR, and elliptical models, including several illustrative
examples. Section 4 describes the REML estimation approach for normal and elliptical
spatial processes. Through a numerical example, the effect of sampling design on effective
sample size is briefly addressed in Section 5. An analysis supports the fact that when
two points are randomly distributed on a unit sphere in an r-dimensional space, the
effective sample size increases, as described in Section 6. Two simulation studies explore
the performance of our proposed method in Section 7. Effective sample size is calculated
for two real datasets in Section 8. Additionally, conventional sampling schemes to obtain
samples after determining effective sample size are outlined in Section 9. Finally, Section
10 is a discussion which includes problems to study in future research. The derivations
for the results presented in this paper are relegated to the Appendix.

2. Motivation

Cressie (1993), p. 14-15 illustrated the effect of spatial correlation on the variance
of the sample mean using an AR(1) correlation structure with spatial data. As a result,
the new sample size (effective sample size) could be interpreted as an equivalent number
of independent observations. Precisely, consider Y (t) = ρY (t − 1) + ε(t), where t =
1, 2, . . . , n, εt is white noise with variance σ2, and |ρ| < 1. Then, if 1 ≤ t, t + h ≤ n,
cor[Y (t), Y (t+ h)] = ρh and the effective sample size is given by

ESS =
n

[1 + 2ρ/(1− ρ)(1− 1/n)− 2(ρ/(1− ρ)2)(1− ρn−1)/n]
. (1)

Formula (1) is associated with the variance of the sample mean var(Y ) = σ2/ESS, which is
equal to σ2/n under independence. The AR(1) process is defined over an equispaced one
dimensional set. A similar formula can be obtained for a two dimensional index set. In
fact, for an index set of the form D = {(i, j) ∈ Z2 : 0 ≤ i ≤ m, 0 ≤ j ≤ n}, let us consider
a random field {Y (i, j) : (i, j) ∈ D} with var[Y (i, j)] = σ2 such that for (i, j), (k, l) ∈ D,

cor[Y (i, j), Y (k, l)] = ρ
√

(i−k)2+(j−l)2 .
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Then, defining

S(ρ,m, n) =
∑

(i,j),(k,l)∈D
i>k,j>l

cor[Y (i, j), Y (k, l)]

=
∑

(i,j),(k,l)∈D
i>k,j>l

ρ
√

(i−k)2+(j−l)2

= (m+ 1)
ρ

1− ρ

(
n− ρ1− ρn

1− ρ

)
+ (n+ 1)

ρ

1− ρ

(
m− ρ1− ρm

1− ρ

)
+ 2

n∑
i=1

m∑
j=1

(m+ 1− i)(n+ 1− j)ρ
√
i2+j2 ,

one has

var[Y ] =
1

(m+ 1)2(n+ 1)2
var

 ∑
(i,k)∈D

Y (i, j)


=

σ2

(m+ 1)2(n+ 1)2
[(m+ 1)(n+ 1) + 2S(ρ,m, n)]

=
σ2

(m+ 1)(n+ 1)

[
1 +

2S(ρ,m, n)

(m+ 1)(n+ 1)

]
.

Therefore, the effective sample size is given by

ESS =
(m+ 1)(n+ 1)[
1 + 2S(ρ,m,n)

(m+1)(n+1)

] . (2)

We recall that (2) is only valid if the locations are arranged on a rectangular grid D. Here,
we define a less restrictive setting to address data points located on a general grid on the
plane.

3. Effective Sample Size

In this section, we provide expressions to quantify the effective sample size for a wide
class of spatial models. We start with a single mean spatial regression model under
normality. We then extend the notion of the effective sample size to the case of two or
more variables. Because we developed this concept for CAR and SAR processes, this
section also considers a similar idea for elliptical distributions.

3.1. The Case of a Single Mean

Consider the random field {Y (s) : s ∈ D ⊂ Rr}. We suppose that Y (·) has been
observed at each of n distinct locations in D. Denote the n-vector of values Y (·) observed
at the data locations s1, s2, . . . , sn as Y = [Y (s1), Y (s2), . . . , Y (sn)]>. Assume that
E[Y ] = µ1, where µ ∈ R and 1 is an n × 1 vector of ones. Let Σ(θ) denote the
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n × n covariance matrix of Y where θ ∈ Θ is a k-vector of unknown parameters and
Θ ⊂ Rk. For multivariate distributions with finite second moments, effective sample size
can be characterized by the correlation matrix R(θ) = (σij/

√
σiiσjj) = C−1Σ(θ)C−1,

where C = diag(σ
1/2
11 , σ

1/2
22 , · · · , σ

1/2
nn ), whose (i, j)th element is ρ(si, sj ,θ). We emphasize

the dependence of the spatial correlation matrix on the data locations. For the set C =
{s1, s2, . . . , sn} the goal is to suggest a function

ESS = ESS(n,R(θ, C), r)

that satisfies the following desirable properties: i) ESS = n, when there is no spatial
correlation; ii) ESS = 1, for a perfect correlation between all possible pairs of variables; iii)
ESS is increasing in n; and iv) ESS decreases as the correlation increases. For simplicity,
the notation for the covariance and correlation matrices will be Σ(θ) and R(θ). The
dependency of effective sample size on C will be discussed in Section 5. Because in many
different cases, effective sample size lies in the interval [1, n], it can be observed as a
reduction of the information due to the spatial association present in the data. There are
many possible reductions of R(θ) to a single number and many appropriate but arbitrary
transformations of that number to the interval [1, n]. For the case in which C = I, a
reduction is provided by the Kullback-Leibler distance from N (µ1,R(θ)) to N (µ1, I).
Straightforward calculations indicate that KL = 1

2

(
log |R(θ)|+ tr(R(θ)−1 − I)

)
. For an

isotropic spatial process with spatial variance σ2 and an exponential correlation function
ρ(si − sj) = exp(−φ||si − sj ||), φ > 0, KL needs to be inversely scaled to [1, n] and
decrease in φ. Another way to avoid making an arbitrary choice of transformation is to
use the relative efficiency of Y , the sample mean, to estimate the constant mean µ under
the process and compare it with µ estimated under independence. Scaling by n readily
indicates this quantity to be

n2(1>R(θ) 1)−1. (3)

If φ = 0, n2(1>R(θ) 1)−1 = 1, and as φ increases to ∞, (3) increases to n. This equation
is attractive in that it assumes no distributional model for the process. The existence
of var(Y ) is implied by the assumption of an isotropic correlation function. A negative
feature of this process, however, is that for a fixed φ, the effective sample size need not
increase in n. As an alternative to the previous suggestions regarding effective sample size,
Griffith (2005) suggested a measure of the size of a geographic sample based on a model
with a constant mean given by

Y = µ1 + e = µ1 + Σ(θ)−1/2e∗,

where Y = [Y (s1), Y (s2), . . . , Y (sn)]>, e = [e(s1), e(s2), . . . , e(sn)]>, and
e∗ = [e∗(s1), e∗(s2), . . . , e∗(sn)]>, respectively, denote n × 1 vectors of spatially autocor-
related and non-autocorrelated errors such that var(e) = σ2

e∗Σ(θ) and var(e∗) = σ2
e∗In.

This measure is
n∗ = tr(Σ(θ)−1)n/(1>Σ(θ)−1 1), (4)

where tr denotes the trace operator. Alternatively, assume that {Y (s) : s ∈ Rr} is a
random field with mean µ, variance σ2 and correlation ρ. Suppose that a realization of the
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process is observed on the domain V ⊂ Rr. Consider the following definition of ergodicity

lim
V→∞

var[Y (V )] = 0,

where the meaning of V →∞ is defined in Lantuejoul (1991) and

var[Y (V )] =
σ2

|V |2

∫
V

∫
V
ρ(x− y) dxdy.

Lantuejoul (1991) defined the integral range, denoted by A, as follows:

A = lim
V→∞

|V |var[Y (V )]

σ2

If A <∞, for large V

var[Y (V )] ≈ σ2A

|V |
.

Then, if A 6= 0 we can find an integer N such that

N ≈ |V |
A
.

In an alternative reduction of R(θ), one can compare the reciprocal of the variance of
the BLUE unbiased estimator of µ under R(θ), which is readily shown to be 1>R(θ)−11.
As φ increases to ∞, this quantity increases to n. Again, no distributional model for
the process is assumed. However, this expression arises as the Fisher information about µ
under normality. In fact, for Y ∼ N (µ1,R(θ)), I(µ) = 1>R(θ)−11, yielding the following
definition.

Definition 1. Let {Y (s) : s ∈ D ⊂ Rr} be a random field such that for s1, s2, . . . , sn ∈ D,
the vector Y = [Y (s1), Y (s2), . . . , Y (sn)]> ∼ N (µ1,R(θ)), where R(θ) is a non-singular
correlation matrix. The quantity

ESS = ESS(n,R(θ), r) = 1>R(θ)−1 1 (5)

is called the effective sample size of Y .

Notice from Definition 1 that if the n observations are independent andR(θ) = I, then
ESS = n. If perfect positive spatial correlation prevails, then R(θ) = 11> is a singular
matrix. Nonetheless, Definition 1 can be extended by considering a pseudoinverse of R(θ).
For instance, the Moore-Penrose pseudoinverse R(θ)+of R(θ) yields

ESS = 1>R(θ)+1 =
1>11>1

n2
= 1.

Note that the Moore-Penrose pseudoinverse of R(θ) is unique (Magnus and Neudecker,
1999, p. 37), although the effective sample size is not affected by choosing a non-unique
pseudoinverse, R(θ)− because for any matrix X, XR(θ)−X> is invariant to R(θ)−. Par-
ticularly, these results can be used for the treatment of any positive semidefinite correlation
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matrix. Here, the correlation matrix R(θ) will be defined by a spatial covariance function
as is customary in spatial statistics. Examples of these matrices will be discussed below.
Haining (1990, p.163) noted that spatial dependency implies a loss of information in the
estimation of the mean. One way to quantify that loss is through (5). Moreover, the
asymptotic variance of the generalized least squares estimator of µ is 1/ESS.

Example 1. Let us consider Y ∼ N (µ1,R(ρ)), with the intra-class correlation structure
R(ρ) = (1− ρ)I + ρJ , J = 11> , and −1/(n− 1) < ρ < 1. Then

ESSIC = n/(1 + (n− 1)ρ).

In Figure 1 (a) we observe that the reduction that takes place in this case is quite severe.
For example, for n = 100 and ρ = 0.1, ESS = 9.17, and for n = 100 and ρ = 0.5, ESS =
1.98. Generally, such noticeable reductions in sample size are not expected. However,
the intra-class correlation does not take into account the spatial association between the
observations. With richer correlation structures, the effective sample size is better at
reducing the information from R(ρ) (the reduction is not so severe). It should be stressed
that when a negative autocorrelation is present some counterintuitive phenomena can
occur. For example, there are specific correlation structures for which the effective sample
size is greater than n. This inconvenience has been noted by Richardson (1990). Additional
examples and effects of negative spatial autocorrelation have been indicated by Anselin
(1988); Griffith et al. (2003) among others.

(a) (b)

Figure 1: (a) ESS for the intra-class correlation; (b) ESS for the a Toeplitz correlation.

Example 2. Consider the vector Y ∼ N (µ1,R(ρ1, ρ2, . . . , ρn−1)), where for |ρi| < 1, the
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correlation structure is defined by the Jacobi matrix as follows:

R(ρ1, ρ2, . . . , ρn−1) =



1 ρ1 ρ1ρ2 ρ1ρ2ρ3 · · ·
∏n−1
i=1 ρi

ρ1 1 ρ2 ρ2ρ3 · · ·
∏n−1
i=2 ρi

ρ1ρ2 ρ2 1 ρ3
. . .

...

ρ1ρ2ρ3 ρ2ρ3 ρ3 1
. . .

...
...

...
...

. . .
. . . ρn−1∏n−1

i=1 ρi
∏n−1
i=2 ρi · · · · · · ρn−1 1


(6)

The inverse of R(ρ1, ρ2, . . . , ρn−1) in (6) is given in the appendix. Consequently, the ESS
has a closed form. Particularly, if ρ1 = ρ2 = . . . = ρn−1 = ρ, the correlation matrix
corresponds to a AR(1) process, and the ESS is given by (see Appendix)

ESSAR = (2 + (n− 2)(1− ρ))/(1 + ρ).

Furthermore, straightforward calculations show that for 0 < ρ < 1 and n > 2,

ESSIC < ESSAR.

Therefore, the reduction in R(ρ) under the AR(1) structure is not as severe as in the intra-
class correlation case. Based on Figure 1 (a) and (b), we see that the effective sample size
is decreasing in ρ in both cases.

Example 3. Let us consider
Y (t) = µ+W (t), (7)

where t ∈ [0, L] and W (t) is a mean zero stationary Gaussian process with a covariance
function of the form

k(s− t) = σ2 exp(−φ|s− t|),

where σ is the standard deviation of W (t) and φ > 0 is a parameter that determines the
correlation function ρ. For instance, consider ρ(s − t) = exp(−|s − t|), L = 1 and φ = 1,
corresponding to a Ornstein-Uhlenbeck process. Xia et al. (2006) studied the problem
of estimating the mean µ in the following two cases: when the parameters σ and φ are
known and when the scale and location are assumed unknown and the correlation function
is assumed known. They also found an explicit expression for the effective sample size. In
fact, when the Ornstein-Uhlenbeck process is sampled at n locations, say ∆, 2∆, . . . , n∆,
the effective sample size allows the following closed form expression:

ESS = 1>R(ρ)−1 1 = 1− (n− 1)
1− ρ
1 + ρ

,

where ρ = exp(−∆).

Example 4. Consider Y j = [Yj(s1), Yj(s2), . . . , Yj(sn)]> ∼ N (µ1,R(θ)), for j = 1, 2, . . . , n,
such that Y j and Y k are independent for i 6= k. Let us define Z = [Y >1 ,Y

>
2 , . . . ,Y

>
n ]>.

Then, Z ∼ N (µ1n2 , I ⊗R(θ)), and

ESSZ = n ESSY .

8



The information provided by independent replicates of the vector Y is captured by the
effective sample size ESSZ . Generally, new information is also accounted for by the
effective sample size when new observations are correlated with existing data. This feature
can be observed as a monotonic property below.

Proposition 1. Assume that Y ∼ N (µ1,R(θ)). Then, for r fixed

i) ESS is increasing in n.

ii) ESS ≥ 1.

Proof. See Appendix

3.2. The Case of Two Means

A spatial scientist may be simultaneously interested in more than one variable. This
motivates the study of extensions of equation (5) to the case of two attribute variables
measured at the same locations in D. Let {X(s) : s ∈ D ⊂ Rr} and {Y (s) : s ∈
D ⊂ Rr} be two random fields representing the variables of interest. The joint treatment
of two correlated spatial variables must consider the following two sources of redundant
information (Griffith, 2005): correlation between the two variables and spatial association
within each variable. We suggest a weighted version of equation (5) to avoid imposing a
correlation structure between X(·) and Y (·). We assume that the information of variables
X(·) and Y (·) is available when both processes are non-spatially correlated and when
neither of them depend on spatial location. We will use X and Y to differentiate these
variables from X(·) and Y (·). A weighted average of X and Y is wX + (1 − w)Y, for
0 ≤ w ≤ 1. Let us call the respective variances σ2

X and σ2
Y , and the correlation between

X and Y , ρXY . Then

var[wX + (1− w)Y ] = w2σ2
X + (1− w)2σ2

Y + 2w(1− w)σ2
Xσ

2
Y ρXY .

Following Griffith (2005), we used this variance to construct a weighted version of the effec-
tive sample size for two means. Indeed, ifX ∼ N (µX1,RX(θ)) and Y ∼ N (µY 1,RY (θ)),
then

ESSw =
w2σ2

X1>RX(θ)−1 1 + (1− w)2σ2
Y 1
>RY (θ)−1 1 + 2w(1− w)ρXY σXσY 1

>RX(θ)−1/2RY (θ)−1/2 1

w2σ2
X + (1− w)2σ2

Y + 2w(1− w)ρXY σXσY
.

(8)

If RX(θ) = RY (θ) = I, then this expression is reduced to n. If w = 0, w = 1 or
RX(θ) = RY (θ), then this expression is reduced to (5). Therefore, the effective sample
size (8) is a weighted average of the individual effective sample sizes. If RX(θ) and RY (θ)
approach the case of perfect positive spatial autocorrelation for both variables, ESSw
approaches one. Here, the weight w is not a parameter to be estimated; w is chosen in
advance by considering the importance of each sample with respect to the other. Defining
the 2× 2 matrices

Ad = diag(w, 1− w),

Φd = diag(σX , σY ),

R =

(
1 ρXY

ρXY 1

)
,
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and
V d = diag(RX(θ)−1/2,RY (θ)−1/2),

we have

1>AdΦdRΦdAd1 = w2σ2
X + (1− w)2σ2

Y + 2w(1− w)σ2
Xσ

2
Y ρXY ,

1>
(

(AdΦd ⊗ I)V
1/2
d

)>
(R⊗ I)

(
(AdΦd ⊗ I)V

1/2
d

)
1 = w2σ2

x1
>RX(θ)−11

+ (1− w)2σ2
Y 1>RY (θ)−11 + 2w(1− w)ρXY σXσY 1>RX(θ)−1/2RY (θ)−1/21,

where ⊗ denotes the Kronecker product. Thereafter, the weighted effective sample size
can be written in matrix form using

ESSw =
1>
(

(AdΦd ⊗ I)V
1/2
d

)>
(R⊗ I)

(
(AdΦd ⊗ I)V

1/2
d

)
1

1>AdΦdRΦdAd1
. (9)

Equation (9) can easily be generalized to a multivariate situation involving p variables. In
such a case, Ad, Φd, and R are p× p matrices, I is an n×n matrix and V d is an np×np
block diagonal matrix.

3.3. CAR and SAR Processes

Consider a CAR model of the following form:

Y (si) | Y (sj), j 6= i ∼ N (µ+ ρ
∑
j

bijY (sj), τ
2
i ), i = 1, 2, · · · , n. (10)

where ρ determines the direction and magnitude of the spatial neighborhood effect, bij are
weights that determine the relative influence of location j on location i, and τ2

i is the condi-
tional variance. If n is finite, we form the matricesB = (bij) andD = diag(τ2

1 , τ
2
2 , · · · , τ2

n),
and according to the factorization theorem,

Y ∼ N (µ1, (I − ρB)−1D).

We assume that the parameter ρ satisfies the necessary conditions for a positive definite
matrix (Banerjee et al., 2004, p. 70-82). A common way to construct B is to use a
defined neighborhood matrix W that indicates whether the areal units associated with
the measurements Y (s1), Y (s2), · · · , Y (sn) are neighbors. For example, if bij = wij/wi+
and τ2

i = τ2/wi+, then
Y ∼ N (µ1, τ2(Dw − ρW )−1), (11)

where Dw = diag(wi+). For a CAR process, as described in equation (11), R−1
CAR =

CΣ−1C for a suitable diagonal matrix C.

Proposition 2. For a CAR model with Σ = τ2(Dw − ρW )−1 where σi = Σ
1/2
ii and

C = diag(σ1, σ2, . . . , σn)

ESSCAR = 1>R−1
CAR1 =

1

τ2

∑
i

σ2
iwi+ − ρ

∑
i

∑
j

σiσjwij

 , (12)

10



Figure 2: ESS for a CAR process defined on a 9× 9 rectangular grid, when τ = 1 and µ = 0.

where wi+ =
∑

j wij . Moreover if σ2
i = τ2, then

ESSCAR = (1− ρ)
∑
i

wi+.

Example 5. Let Y be a CAR process as in (11), defined on a 3 × 3 rectangular lattice.
Assume that each site located at the edges of the grid has two neighbors and the central
site has four neighbors as described by the matrix W defined as

W =



0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0


.

The effective sample size (12) as a function of ρ is shown in Figure 2 for τ = 1 and µ = 0.
This allows us to find the effective sample size when an estimate of ρ is available. We
observe, for example, that for ρ = 0.5 the sample size decreases from 9 to 5.

Now, let us consider a SAR process of the form

Y = X + e
e = Be+ v

11



where B is a matrix of spatial dependency, E[v] = 0, and Σv = diag(σ2
1, . . . , σ

2
n). Then,

Σ = var[Y ] = (I − B)−1Σv(I − B>)−1 and as before R−1
SAR = CΣ−1C for a suitable

diagonal matrix C. We can state the following result.

Proposition 3. For a SAR process with B = ρW where W is any contiguity matrix,

Σv = σ2I, σi = Σ
1/2
ii and C = diag(σ1, σ2, . . . , σn), the effective sample size is given by

ESSSAR = 1>R−1
SAR1 =

1

σ2

∑
i

σ2
i − 2ρ

∑
i

∑
j

σiσjwij + ρ2
∑
i

∑
j

∑
k

σiσjwkiwkj

 .
(13)

Proof. See Appendix

The definition of effective sample size can be generalized if we consider the Fisher in-
formation quantity for other non-normal multivariate distributions, which we will develop
in the next section for a multivariate elliptical distribution.

3.4. Elliptical Distributions

Definition 2. Let {Y (s) : s ∈ D ⊂ Rr} be a random field and the locations s1, s2, . . . , sn ∈
D. Suppose that the random vector Y = [Y (s1), Y (s2), . . . , Y (sn)]> has a density of the
form

f(Y ) = |Σ(θ)|−1/2g((Y − µ)>Σ(θ)−1(Y − µ)),

where µ ∈ Rn is a location parameter, Σ(θ) is an n × n positive definite matrix, and g :
R→ [0,∞) such that

∫∞
0 un/2−1g(u) du <∞. Therefore, the vector Y has an elliptically

contoured distribution and is denoted as Y ∼ ECn(µ,Σ(θ), g).

Definition 3. Assume that Y ∼ ECn(µ1,R(θ), g). The effective sample size associated
with Y is defined as

ESSe = 4E
[
‖Z‖2W 2

g (‖Z‖2)
] 1

n
1>R(θ)−11 = κ · ESS, (14)

where Wg(u) = g′(u)/g(u) and Z = R(θ)−1/2(Y − µ1).

The definition of ESSe stems from the form of the expected information matrix for
the case of elliptically contoured models (Lange et al., 1989). Particularly, if Y follows a
multivariate t-distribution, say Y ∼ tn(µ1,R(θ), ν), ν > 2, then

ESSt =
ν + n

ν + n+ 2
ESS. (15)

From (15) we see that ESSt ≤ ESS and from Proposition 1 for ν > 2 and n ≥ 1, ESSt ≥
3/2.

Example 6. The power exponential distribution, PEn(µ,R(θ), λ) with λ > 0, is an
extensively studied distribution because it presents both behaviors, light- (λ > 1) and
heavy-tailed (λ < 1) distributions, while also including the normal case (λ = 1). The-
oretical developments for this distribution can be found in Gómez et al. (1998). An
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application in the context of repeated measure data may be found in Lindsey (1999). If
Y ∼ PEn(µ1,R(θ), λ), λ > 0, then using results given in Osorio et al. (2007) we obtain

ESSpe =
λ2Γ

(
n−2
2λ + 2

)
21/λΓ( n2λ)

ESS. (16)

The constant κ for the power exponential distribution has been plotted as a function of
n and λ to explore those values for which the effective sample size is greater or smaller
than the effective sample size for the Gaussian case, ESS. In Figure 3 we observe that κ
increases as long as λ and n increase. Therefore, there are values of λ and n for which
ESSpe < ESS and there are also values of λ and n for which ESSpe > ESS. For the
light-tailed case (λ > 1), the behavior of κ is similar (not shown here), yielding the same
conclusions as for (λ < 1).

Figure 3: κ = λ2Γ
(
n−2
2λ

+ 2
)
/(21/λΓ( n

2λ
)) versus λ and n for the exponential power distribution. The grid

was generated for λ ∈ [0.5, 1] and n = 1, 2, . . . , 50.

4. Estimation

We now discuss the estimation of the effective sample size for the previously introduced
models. The estimation of the effective sample size can be handled by maximum likelihood
for the models used in examples 1-3 because there are few parameters. We note that
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in spatial statistics, there is no replication of the random vector Y . Therefore, efficient
estimation requires defining a small number of parameters in the covariance structure Σ(θ)
with respect to n. Commonly used covariance structures in spatial statistics involve few
parameters, which are related to the spatial range, sill, nugget effect, and smoothness of
the process Y (·). Let {Y (s) : s ∈ D ⊂ Rr} be a random field. Let {ε(s) : s ∈ D ⊂ Rr} be
a zero mean Gaussian random field such that cov(ε(t), ε(t+ s)) = σ(s,θ), s, t ∈ D,θ ∈ Θ.
Suppose that for the locations s1, s2, . . . , sn ∈ D, Y := [Y (s1), Y (s2), . . . , Y (sn)]> and
ε := [ε(s1), ε(s2), . . . , ε(sn)]>. Consider a model of the form

Y = µ1 + ε, (17)

where µ ∈ R, and ε ∼ N (0,Σ(θ)). Our goal here is to provide an estimate for the unknown
parameter θ so that the effective sample size can be estimated by substituting this value
in the correlation matrix. We consider that the mean of the process is also unknown;
that is, the estimation should consider both of the following unknown parameters: θ and
µ. One way to approach this problem is by using the REML estimator of θ, which is
called θ̂REML and was first introduced by Patterson and Thompson (1971). The REML
estimator of θ is based on performing maximum likelihood estimations for K>Y , where
K is an n × (n − 1) matrix chosen so that E[K>Y ] = 0 and rank[K] = n − 1. Then,
minus twice the log likelihood of K>Y we have

`REML(θ) = log |K>Σ(θ)K|+ (n− 1) log(2π) + Y >K(K>Σ(θ)K)−1K>Y .

Harville (1974, 1977) established sufficient conditions so that `REML does not depend on
K. Then

`REML(θ) = log |Σ(θ)|+ log(1>Σ(θ)−11) + r>Σ(θ)−1r + (n− 1) log(2π),

where
r = Y − µ̂1, µ̂ = (1>Σ(θ)−11)−11>Σ(θ)−1Y . (18)

Accordingly, an estimator of the effective sample size is

ÊSS = 1>R(θ̂REML)−11. (19)

The restricted maximum likelihood estimation can be extended in a very simple way to
the context of elliptically distributed errors. In this case, the REML estimator has the
same form as in the normal case. Indeed, assuming the model Y ∼ ECn(µ1,Σ(θ), g), one
has

Z = K>Y ∼ ECn−1(0,K>Σ(θ)K, g),

with density function

f(Z;θ) = |K>Σ(θ)K|−1/2g(Y >K(K>Σ(θ)K)−1K>Y ). (20)

Let θ̃REML be the REML based on equation (20). Then, following the results given by
Anderson et al. (1986), we have

θ̃REML =
n− 1

ug
θ̂REML,
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where ug is the maximum of the function h(u) = u(n−1)/2g(u). Therefore, minus twice
the log-likelihood function associated with the REML estimation for elliptically contoured
distribution errors we have

`REML(θ) = log |Σ(θ)|+ log(1>Σ(θ)−11)− 2 log g(r>Σ(θ)−1r),

where r and µ̂ are given in (18). When g is a continuously differentiable function, ug can
be obtained as a solution to the equation

n− 1

ug
+Wg(u) = 0.

When g is the density generating function associated with the normal or Student’s-t distri-
bution, ug = n−1, and the power exponential distribution ug = (n−1

λ )1/λ. The estimation
of parameters associated with the density generating function g has been suggested in the
literature. For example, the degrees of freedom of Student’s-t distribution or the shape
parameter λ of the exponential power distribution have been used. However, some authors
(Breusch et al., 1997; Fernández and Steel, 1999) have noted drawbacks of the maximum
likelihood estimation of these parameters. Without replication, as in the spatial regression
case given in (17), the kurtosis parameter selection cannot be conducted using procedures
based on the log-likelihood function because it is not bounded (Zellner, 1976). The use
of parameter selection via cross-validation (Rao and Wu, 2001) may overcome this incon-
venience. Cressie (1993) and Cressie and Lahiri (1996) studied the asymptotic properties
of the REML estimator for regression models with covariance parameters that follow a
Gaussian linear model, including linear spatial regression. Particularly, the following result
Corollary 3.1 Cressie and Lahiri (1996) was established to obtain a more general model
than (17).

Proposition 4. Define J n(θ) = (Ef n(θ))1/2, where f n(θ) = (∂2`REML(θ)/∂θi∂θj), 1 ≤
i, j ≤ k, and Bn(θ) = diag(‖Π(θ)Σ1(θ)‖, . . . , ‖Π(θ)Σk(θ)‖), where Π(θ) = Σ(θ)−1 −
Σ(θ)−1(1(1>Σ(θ)−11)−11>Σ(θ)−1, and Σi(θ) = ∂Σ(θ)/∂θi. Suppose that there exists
a nonsingular matrix W̃ (θ), continuous in θ, such that

J n(θ)Bn(θ)
u→ W̃ (θ).

Then, under the conditions of Theorem 3.1 in Cressie and Lahiri (1996),

J n(θ̂n)(θ̂n − θ)
d→ N (0, Ik),

where θ̂n = θ̂REML, the REML estimator based on the first n observations.

The following result provides the asymptotic normality of the effective sample size.

Proposition 5. Suppose that the assumptions of Proposition 4 hold, and assume that
g(θ) = 1>Σ−1(θ)1 has continuous first partial derivatives. Then

[∇>g(θ)J n(θ̂n)J n(θ̂n)>∇g(θ)]−1/2(g(θ̂n)− g(θ))
d→ N (0, 1).

Proof. This result is an immediate consequence of the delta method and Proposition 4.
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5. Dependence of ESS on the Spatial Sites

In Section 3, we emphasized the dependence of the effective sample size on sampling
design. This dependence exists through the correlation structure of the process. In other
words, the ESS depends on the configuration of the sites that belong to C through R(θ).
Therefore, it is natural to have different ESS values for datasets that are arranged differ-
ently in space. Additionally, ESS depends on the parametric model that is used for the
spatial covariance structure. Hence, the first property described above is related to C, and
the second is related to the selection of the covariance structure.

To elucidate the dependence of ESS on C, we performed a numerical experiment for the
following three configurations: a regular grid, a random pattern, and an aggregate pattern.
For each case, 100 observations were generated from a zero-mean Gaussian random field
with the following correlation structures:

Spherical: ρ(h) =

{
1− 1.5hφ + 0.5

(
h
φ

)3
, h < φ,

0, otherwise,

Exponential: ρ(h) = exp
(
−h
φ

)
,

with φ = 1. Then, the effective sample size (5) and its estimation were computed as is
shown in Figure 4.

ÊSSS = 9.063, ÊSSE = 7.954 ÊSSS = 1.001, ÊSSE = 1.213 ÊSSS = 3.897, ÊSSE = 5.610

ESSS = 4.401, ESSE = 4.504 ESSS = 1.965, ESSE = 1.994 ESSS = 5.904, ESSE = 6.304

Figure 4: ESSS and ESSE denote the effective sample size, respectively, for the spherical and exponential
correlation structures. Similarly for the estimations ÊSSS and ÊSSE .

For this particular experiment, effective sample size is greatly affected by sampling
design. Indeed, whereas the ESS is overestimated for a regular design, it is underestimated
for a design with clusters. Moreover, in Figure 4 (b) we see that estimators from the
random design are closer to the true values than those from other designs. The same
patterns hold for an extensive simulation study (not shown here) that was carried out to
explore the sensitivity of ESS to sampling design for several spatial correlation structures.

The problem of finding an optimal spatial sampling design has been widely considered
in the literature. In spatial statistics, at least three different approaches have been studied
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to tackle this problem. The first approach considers the optimal sampling design for pre-
dicting the spatial process at some unobserved location (Su and Cambanis, 1993; Ritter,
1996). The second approach studies the optimal sampling design using an empirical vari-
ogram to estimate the covariance structure (Russo, 1984; Bogaert and Russo, 1999). The
third approach determines the optimal design for covariance parameter estimation (Lark,
2002). Improvements to existing methods have been suggested by Zhu and Stein (2005).
These authors have suggested the following three design criteria for parameter estima-
tion: locally optimal designs, minimax designs using relative efficiency, and a simulated
annealing algorithm.

In any experiment aiming to determine effective sample size, an appropriate sampling
design should be planned in advance to provide sufficiently good ESS estimates (using
optimality criteria). We have described the REML estimation for the variogram param-
eters, therefore, the locally optimal design developed by Zhu and Stein (2005), based on
the inverse of the Fisher information matrix of θ to approximate the covariance matrix of
θ̂REML, could be used in practice.

6. Random Locations

In this section, we explore the notion of the effective sample size when two locations
defined over a compact set on a Euclidean space are randomly distributed. This problem
has been studied repeatedly in the context of geometrical probabilities. We start by
considering a compact subset D of the r-dimensional Euclidean space Rr. Following
Burgstaller and Pillichshammer (2009), we define

a(D) = E[||x− y||],
d(D) = max{||x− y|| : x,y ∈ D},

where || · || denotes the Euclidean distance and x = (x1, x2, . . . , xr),y = (y1, y2, . . . , yr) ∈
D. Assume that we choose x and y uniformly and independently from D. The problem of
finding a(D) as a function of the dimension r was already stated in the literature (Alagar,
1976; Dumbar, 1997). For example, for all compact subsets of R, a(D) = d(D)/3. If
D ⊆ Rr with diameter d(D), then

a(D) =
r

2r + 1
βrd(D), (21)

where

βr =


23r+1((r/2)!)2r!

(r+1)(2r)!π , for even r,

2r+1(r)!3

(r+1)(((r−1)/2)!)2(2r)!
, for odd r.

Moreover, for specific geometric figures, the distance d(D) has been calculated explicitly.
In fact, if D ⊆ R2 is a rectangle of sides a ≥ b or if D is a cube in Rr, then a(D) can also
be written as a function of d(D) (Burgstaller and Pillichshammer, 2009). These authors
also provided bounds for the average distance between two points that are uniformly
and independently chosen from a compact subset of the r-dimensional Euclidean space.
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Philip (2007) determined the probability distribution for the distance between two random
points in a box, including the expected distance, which is known as Robbins’ constant.
Similar calculations for the expected value of the distance between two randomly defined
points on circles and rectangles in R2, in the context of random networks, can be found
in Moltchanov (2012). Now, let x and y be two independent random vectors uniformly
distributed on the set B := B(0, 1) = {z ∈ Rr : |z| ≤ 1}. That is,

f(x) =

{
Γ(r/2+1)

πr/2
, if x ∈ B(0, 1)

0, otherwise

A formula for the expected value of the square of the distance between x and y, E[||x−y||2],
is (see Appendix)

E[||x− y||2] =
2r

r + 2
. (22)

The expressions (21) and (22) for a(D) and E[||x− y||2, respectively, are increasing func-
tions of the dimension r. As a result, the distributions of the expressions described in (21)
and (22) stochastically increase in dimension. Hence, for a fixed θ, ρ(si, sj ,θ) stochasti-
cally decreases in dimension. On average, the correlation grows weaker as the dimension
grows larger, and the effective sample size increases in r.

7. Simulations

To illustrate how our method uncovers the effective sample size, we considered several
numerical experiments; two of them are reported here. The first was designed to explore
the behavior of the ESS for different parametric covariance models. The second experiment
compares our proposal with Griffith’s proposal and the integral range.

7.1. Simulation Study 1

We used Monte Carlo simulation to address the following questions: 1. How does
the effective sample size change with different covariance structures (models)? 2. How
does the nugget effect impact the estimation of the effective sample size? 3. What is
the performance of the estimated effective sample size in terms of bias and variance when
variogram model parameters vary? One hundred points were fixed in the region [0, 1] ×
[0, 1], and random samples were generated from a zero-mean Gaussian distribution with
covariance matrix Σ(θ) = C(||si − sj ||,θ) such that

C(h,θ) =

{
τ2 + σ2, h = 0,
σ2ρ(h), h > 0,

and the elements of the correlation matrix are

R(θ)ij =

{
1, i = j,
σ2ρ(h)
σ2+τ2

, i 6= j.

The correlation functions considered in the study are listed in Table 1.
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Model Correlation Function

Spherical ρ(h) =

{
1− 1.5hφ + 0.5

(
h
φ

)3
, h < φ

0, otherwise.

Exponential ρ(h) = exp
(
−h
φ

)
Matérn ρ(h) = 1

2κ−1Γ(κ)

(
h
φ

)
Kκ

(
h
φ

)
Gaussian ρ(h) = exp

[
−
(
h
φ

)2
]

Table 1: Correlation models used in the study. In the Matern model Γ(κ) is the gamma function and Kκ is
the modified Bessel function of the second kind. The exponential model is a particular case of the Matérn
function for κ = 1/2 and the Gaussian model corresponds to the Matérn function for κ→∞.

For all models, simulations were generated using σ2 = 1, τ2 ∈ {0.01, 0.1, 1, 10}, and
φ ∈ {0.1, 0.5, 1}. For the Matérn model κ = {0.5, 1, 1.5, 2.5}, all κ values were estimated
for starting values belonging to the set {0.5, 1, 2}. Our results are based on 500 replicates
2. In each run, the REML estimator of θ = (σ2, τ2, φ, κ)> and the estimation of the
effective sample size given in (19) were calculated. Based on these 500 replicates, the
standard deviation of the ESS values were also recorded. The results are shown in Table
2.

Table 2 shows the model parameters, theoretical value of the effective sample size
and its estimates and standard deviations. We observe an increase in the ESS when the
nugget effect increases. This agrees with the fact that a spatial sequence associated with
a pure nugget effect model is a white noise process for which ESS = n, as observed in
several entries in Table 2 for τ = 10. In most cases we considered, the standard deviation
associated with the estimation of the ESS also increases when the nugget effect increases;
the exception being τ = 10, in which the maximum sample size is attained. Additionally,
for each covariance model, the ESS decreases as the range increases, as expected. Although
there are no clear monotonic properties when the smoothing parameter κ increases, we
found that the largest bias and standard deviation for the estimates occurred for the
Matérn model with κ ∈ {1, 1.5, 2.5}. This behavior may be explained by the fact that
in the Matérn class, κ was also estimated via REML, increasing the complexity of the
overall process because the REML estimator usually involves a highly nonlinear system of
equations. Additionally, in Table 2 we observe that the standard deviation of the estimates
decreases as φ increases only for the exponential model.

7.2. Simulation Study 2

In this section, we carried out another Monte Carlo simulation to compare the per-
formance of the three measures of effective sample size reviewed in Section 3; Griffith’s
proposal (n∗), our proposal (the ESS), and effective sample size based on the integral range

2We performed Monte Carlo experiments increasing the number of simulation replicates to 1,000. No
pattern changes were observed.
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(N). We used a sample size of 360 to compare these three methods because the estima-
tion of N requires us to split the region into small windows (Lantuejoul, 2010, p. 32-34).
Consequently, the chosen sample size was larger to ensure that each window had enough
observations. The random samples were generated from a zero-mean Gaussian distribu-
tion with three different covariance functions (exponential, spherical and Gaussian), which
had the same functional form as in the first simulation study. For all models, simulations
were generated for σ2 = 1, τ2 ∈ {0.01, 0.1, 1, 10} and φ ∈ {0.1, 0.5, 1}. Estimation of the
covariance parameters was addressed via an REML estimation for n∗ and the ESS, and
an estimate of N was obtained using a method suggested in (Lantuejoul, 2010, p. 32-34).
Our results are based on 500 replicates for which the three estimates of effective sample
size were calculated. Standard deviations of the ESS values were obtained from these 500
replicates.

There is no theoretical value for the estimate of N ; therefore, it is not possible to
compare all three coefficients in terms of bias. Table 3 shows that in some cases, n̂∗ and
ÊSS overestimate the true values. This is also observed in the first simulation study and is
associated with the sampling design, which in this case is closer to a cluster pattern because
the observed area ([0, 1]× [0, 1]) was fixed for both studies, but the sample size was larger
in the second study. Clearly, the estimates obtained for n∗ and the ESS are comparable in
terms of bias and precision, but neither is comparable with those obtained for N , which in
most cases are much greater than n. Although the nugget effect has a clear impact on the
ESS, in all cases ÊSS reaches the sample size n, which is also observed for n̂∗. Moreover,
both estimators increase with τ . The correlations ρ1 = cor(ÊSS, n̂∗) and ρ2 = cor(ÊSS, N̂)
are displayed in the last two columns of Table 3. Additionally, we explored the linear
association between ÊSS and n̂∗. In all cases, ρ1 = 0.99 and 0 ≤ ρ2 ≤ 0.44, which
highlights both the strong linear association between ÊSS and n̂∗ and the poor linear
relationship between ÊSS and N̂ . For the spherical and exponential cases, n̂∗ has smaller
variance than ÊSS, while the variance of N̂ is much larger than the other two estimators.
Overall, the estimates of n∗ and the ESS provide comparable results but differ completely
from the approach based on the integral range. This may be due to the fact that the
estimation procedure for N is not based on the statistical inference of a normal model in
contrast to the other two estimation methods.

8. Real Data Examples

In this section, we discuss two examples with real data to illustrate practical applica-
tions of this work. The first example uses the well-known Murray smelter site dataset in
which the variables of interest are arsenic (As) and lead (Pb). The second example per-
tains to a forest inventory where several variables concerning the trees and terrain have
been measured. These two examples illustrate the calculation of the effective sample size.

8.1. The Murray Smelter Site Dataset

The dataset consists of soil samples collected in and around the vacant, industrially
contaminated, Murray smelter site (Utah, USA). This area was polluted by airborne emis-
sions and the disposal of waste slag from the smelting process. A total of 253 locations
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were included in the study, and soil samples were taken from each location. Each georef-
erenced sample point is a pool composite of four closely adjacent soil samples in which the
concentration of the heavy metals arsenic (As) and lead (Pb) was determined. A detailed
description of this dataset can be found in Griffith and Paelinck (2011), and a plot of the
locations appears in Figure 5 (a). For each location, the As and Pb attributes are shown
in Figure 5 (b) and (c).

(a) (b)

Figure 5: Locations of 253 geocoded aggregated surface soil samples collected in a 0.5 square mile area of
Murray, Utah, and their concentrations of As and Pb measured. Of these 173 were collected in a facility
superfund site, and 80 were collected in two of its adjacent residential neighborhood located along the
western and southern borders of the smelter site. (a) As measurements; (b) Pb measurements.

Recently, a study of the spatial association between As and Pb for the Murray dataset
was conducted by Vallejos et al. (2013). They found certain directions for which the spatial
association can be quantified through the codispersion coefficient.

Nine semivariogram models were fit to As and Pb, both of which had previously
been transformed by the Box-Cox function to achieve symmetry. The estimates of the
parameters of the variograms, mean square error (MSE), and effective sample sizes for
both variables are reported in Table 4. The effective sample sizes here range from 15.60
to 50.09 for As and 14.89 to 101.6 for Pb. Although the effective sample sizes are of the
same order of magnitude as those provided by Griffith (2005), they tend to be noticeably
smaller. The best fit (using the MSE) for both variables was achieved with the spherical
model with effective sample sizes of 41.20 and 87.65, respectively. For the Matérn models,
we used the following initial values for the smoothing parameter: κ = 0.5., κ = 1, and
κ = 2. The effective sample sizes for the last two Matérn models do not differ, whereas the
first Matérn model represents the worst fit in both cases; it has very different MSE values
than the other models. Table 4 shows that in both cases the worst fit has the smallest
nugget effect value, which produces a small effective sample size for As and Pb. The values
are consistent with what would be obtained with a time series for which ρ = 0.52180 for
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As and ρ = 0.49363 for Pb, as follows:

As : ESSAR = 78.02,

Pb : ESSAR = 86.43.

In the As case, the effective sample size, which was computed by fitting a variogram
model, is smaller than the sample size produced by assuming an autoregressive correlation
structure.

8.2. The Pinus radiata Dataset

Pinus radiata is one of the most widely planted species in Chile and is planted in a
wide array of soil types and regional climates. Two important measures of plantation
development are dominant tree height and basal area; research shows that both these
measures are correlated with the regional climate and local growing conditions (Snowdon,
2001). The study site is located in the Escuadrón sector, south of Concepción, in the
southern portion of Chile (36◦ 54’ S, 73◦54’ O) and has an area of 1244.43 hectares.
Aside from mature stands, we were also interested in areas that contain young (i.e., four
years old) stands of Pinus radiata. These areas have an average density of 1600 trees
per hectare. The basal area and dominant tree height in the year of the plantation’s
establishment (1993, 1994, 1995, and 1996) were used to represent stand attributes. These
three variables were obtained from 200 m2 circular sample plots and point-plant sample
plots. For the latter, four quadrants are established around the sample point; the four
closest trees in each quadrant (16 trees in total) are then selected and measured. The
samples were located systematically using a mean distance of 150 meters between samples.
The total number of plots available for this study was 468 (Figure 6a). Figure 6 shows a
simple bilinear interpolation and the corresponding contours for the two variables.

(a) (b) (c)

Figure 6: (a) Locations; (b) Bilinear interpolation of the three basal area; (c) Bilinear interpolation of the
three height.

The spatial correlation between the variables that correspond to the Pinus radiata
dataset has been addressed by using a Nadaraya-Watson version of the codispersion co-
efficient in Cuevas et al. (2013). The spatial association between pairs of variables was
visualized through a graphical tool called a codispersion map.
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As before, several variogram models were fit to the Pinus radiata dataset, which con-
tains each tree’s basal area and height. We also transformed these variables using the
Box-Cox function to achieve symmetry. Summaries of the parameter estimates, MSE, and
effective sample size can be found in Table 5. To provide a measure of the uncertainty of
the effective sample size for these data, we implemented the block bootstrap introduced
by Sherman (1996) for statistics calculated from a spatial lattice. The spatial locations
shown in Figure 6(a) were divided into three, four, and six non-overlapping blocks to en-
sure that there would be enough points to estimate the variance of the effective sample
size in each block. The results are displayed in columns 8-10 of Table 5. The effective
sample sizes in this case range from 8.64 to 58.33 for the basal area and 7.60 to 28.76 for
height. The exponential and spherical covariance functions achieved the best fit for both
variables using the MSE. The block bootstrap estimations for the variance of the effective
sample size displayed in Table 5 show large variability that depends on the block size,
making interpretation difficult and comparison of this technique with others problematic.

9. Sampling Schemes

In Section 5, we noted that sampling design affects sample size calculations. Here, we
briefly discuss how to select the samples once the effective sample size has been determined.
A recent guide with several methods and discussions can be found in Müller (2010). It is
desirable for the selected observations to preserve the original correlation structure. This
can be tested by measuring the difference between estimates of the covariance parameters
before and after selecting the final sample. Another relevant case is when a pilot study
with enough information to achieve a high-quality estimation of the variogram is available.
Because there are many different configurations for the original sampling region, a stratified
sampling design seems to be a suitable method for the analysis of spatial data (Gelfand
et al., 2010). One way to cover the whole region is by using tessellation, as conducted by
Griffith (2005) (see also Overton and Stehman, 1993) with a method involving hexagonal
tessellation. The radius of the desired hexagon can be approximated as a function of the
area of the landscape to be sampled. Then, a starting point is generated, which is the
origin of a sequence of hexagon centroids. Consequently, the hexagons are generated with
a standard Thiessen polygon algorithm. For the Pinus radiata dataset, the hexagonal
tessellations, centroids, and sample locations are shown in Figure 7.

10. Conclusions and Final Remarks

We have proposed using the Fisher information quantity about the mean in a single-
mean linear spatial regression model to assess sample size reduction due to the effect of
spatial autocorrelation. Additionally, the sample size reduction (i.e., the reduction of the
effective sample size) has been extended to the most common process models in spatial
statistics. These include the CAR and SAR models and the single-mean linear process with
several different patterned correlation matrices. Furthermore, we discussed the dependent
case of an elliptically distributed process. A brief review with alternative measures to
calculate the effective sample size and examples supplemented our discussion.
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Figure 7: (a) Hexagonal tesselation with radius 300 m; (b) Hexagonal tesselation with radius 400 m ; (c)
Hexagonal tesselation with radius 500 m. The locations are denoted by crosses (x) and the centroids are
denoted by solid circles (•), for the forestry dataset.

The estimation of the parameters in the correlation structure was handled via REML,
which in the elliptical case coincides with the normal distribution when the degrees of
freedom are known. In this case, the computation of the effective sample size only differs
from the normal case by a constant. The estimation of the degrees of freedom in the
elliptical case and the selection of spatial models when a single replicate is available are
open problems that deserve further research.

The developments for random locations discussed in Section 6 and the simulation
studies described in Section 7 support our proposal and highlight the superior performance
of the ESS with respect to other methods. Furthermore, our results enable extending these
ideas to more general contexts. Of particular interest is the extension of (5) for processes
of the form Y ∼ N (Xβ,R(θ)). However, there are some restrictions on the number
of independent variables that need to be taken into account. For example, dim(β) +
dim(θ) << n; therefore, no replicates are needed in the estimation process. The use of an
information matrix to extend the notion of the effective sample size is an open problem
for future research.

There is a relationship between the ESS and the variance of an estimate of the spatial
mean described by the quantity

M(A) =

∫
A Y (s)ds∫

A ds
,

where A ⊂ D. The usual best linear unbiased (BLU) estimator is µ̃ = λµY (s), where
λµ = (1>R 1)−11>R−1 represents the vector of optimal weights. In this kriging context,
Barnes (1988) and de Gruijter and ter Braak (1990) have derived the variance of µ̃, which
is

var(µ̃) = (1>R 1)−1.

An apparent paradox arises here because if the ESS increases, the kriging variance de-
creases. Therefore, instead of reducing the sample size, we would try to increase the
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sample size to obtain a smaller kriging variance. Nonetheless, we do not describe how
to reduce kriging variance; instead, we only introduce the ESS to quantify the equiva-
lent number of independent observations that occur due to the spatial correlation that
is present in the dataset. This phenomenon occurs when the main goal is to estimate
an overall mean µ in a single-mean spatial linear model, such as the one described in
Definition 1.

In Section 8.2, a block bootstrap approach was used to calculate the uncertainty mea-
sures of the estimates. Although Sherman’s approach is valid for statistics calculated
from a rectangular lattice, no definite proposals exist in a general spatial setting. Further
research should be developed to obtain confidence regions for the effective sample size.

The use of line transects to observe animal or plant species is very common in several
areas of study (Buckland et al., 1992), and the questions addressed in this paper can
be reformulated in this context. If we have n observations that have been taken over a
transect line, it is important to determine the effective sample size for this dataset when
the goal is to estimate an overall mean over that transect line. To resolve this issue, it
is necessary to define a process over the transect that includes an appropriate correlation
structure for the observations. If information is available for two variables defined in a
region that includes the transect line of interest, the codispersion coefficient (Rukhin and
Vallejos, 2008) can be used to quantify the spatial association in the particular direction
of the transect line.
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Appendix

Matrices of Example 2
The inverse of R(ρ1, ρ2, . . . , ρn−1) in (6) is the tri-diagonal matrix given by

R(ρ1, ρ2, . . . , ρn−1)−1 =



1
1−ρ21

− ρ1
1−ρ21

0 · · · 0

− ρ1
1−ρ21

1−ρ21ρ
2
2

(1−ρ21)(1−ρ22)
− ρ2

(1−ρ22)
· · · 0

0 − ρ2
(1−ρ22)

. . .
. . . 0

0 0
. . .

. . .
...

...
...

. . . 1−ρ2n−2ρ
2
n−1

(1−ρ2n−2)(1−ρ2n−1)
− ρn−1

(1−ρ2n−1)

0 · · · 0 − ρn−1

(1−ρ2n−1)
1

(1−ρ2n−1)


.

If ρ1 = ρ2 = . . . = ρn−1 = ρ the correlation matrix of an AR(1) process is
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Rn(ρ) =


1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

...
...

...
. . .

...
ρn−1 ρn−2 ρn−3 · · · 1

 .

The inverse is given by

R−1
n (ρ) =


1/(1− ρ2), if i = j = 1, n,

(1 + ρ2)/(1− ρ2), if i = j = 2, · · · , n− 1,

−ρ/(1− ρ2), if |j − i| = 1,

0 otherwise.

and the effective sample size is

ESSAR = (2 + (n− 2)(1− ρ))/(1 + ρ).

Proof of Proposition 1
We will use a subscript on R(θ), 1, and ESS to emphasize the dependency of these

quantities on the sample size n.
To prove i) it is enough to show that ESSn+1 − ESSn ≥ 0, for all n ∈ N. First, we

define the (n+ 1)× (n+ 1) correlation matrix Rn+1(θ) as follows

Rn+1(θ) =

(
Rn(θ) γ

γ> 1

)
,

where γ> = (γ1, γ2, · · · , γn), 0 ≤ γi ≤ 1,. Since Rn+1(θ) is positive definite, the Schur
complement (1−γ>Rn(θ)−1γ) of Rn(θ) is positive definite (Harville 1997, p. 244). Thus
(1− γ>Rn(θ)−1γ) > 0. Then

ESSn+1 = 1>n+1Rn+1(θ)−11n+1 = 1>n+1

(
Rn(θ) γ

γ> 1

)−1

1n+1

= ESSn +
(1>nRn(θ)−1γ)2 − 21>nRn(θ)−1γ + 1

1− γ>Rn(θ)−1γ
,

where 1>n+1 = (1n 1)>. Since the function f(x) = x2 − 2x+ 1 = (x− 1)2 ≥ 0, for all x, we
have that ESSn+1 − ESSn ≥ 0, for all n ∈ N.

To prove ii) we use the Cauchy-Schwartz inequality for matrices. Let us denote
Rn(θ) = (rij). Then n2 ≤ (1>nRn(θ)1n)(1>nRn(θ)−11n). Since 0 ≤ rij ≤ 1, one has
1>nRn1n = n +

∑n
j=1

∑
i 6=j rij ≤ n + n(n − 1). Hence 1>nRn(θ)1n ≤ n2, and this implies

that 1>nRn(θ)−11n ≥ 1.

Proof of Proposition 3
Equation (13) can be derived from the following facts:
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R−1
SAR = CΣ−1

SARC =
1

σ2
C(I − ρW>)(I − ρW )C

=
1

σ2
C(I − ρW − ρW> + ρ2W>W )C,

ρ1>CWC1 = ρ1>CW>C1 = ρ
∑
i

∑
j

σiσjwij ,

ρ21>CW>WC1 = ρ2
∑
i

∑
j

∑
k

σiσjwkiwkj .

Derivation of Equation (16)
The required expectations can be obtained by direct integration. Note that the density

of the random variable U = ‖Z‖2 is given by (Fang et al., 1990, p. 36)

h(u) =
πn/2

Γ(n/2)
un/2−1g(u) =

λ

Γ( n2λ)2n/(2λ)
un/2−1 exp(−1

2u
λ), u > 0.

Moreover, for Y ∼ PEn(µ,Σ, λ) we have Wg(u) = −1
2λu

λ−1, with λ 6= 1. Thus, we need
to compute

E(W 2
g (U)U) =

λ2

4
E(U2λ−1).

Using that
∫∞

0 h(u) du = 1, one gets

E(U2λ−1) =
λ

Γ( n2λ)2n/(2λ)

∫ ∞
0

u(4λ+n−2)/2 exp(−1
2u

λ) du

=
Γ(4λ+n−2

2λ )

Γ( n2λ)
22−1/λ,

from where the result can be obtained.

Derivation of Equation (22)
Since x and y are independent, we have

E[||x− y||2] = E[||x||2] + E[||y||2].

By symmetry, we compute E[||x||2], which is

E[||x||2] = C−1
r

∫
B

∫
B
||x||dx dy = C−1

r

∫
B
||x||dx,

where C−2
r = πr/2

Γ(r/2+1) . To obtain
∫
B ||x||dx, we use the formula for the volume of an

r-dimensional sphere with radius % which is given by

Vr(%) = Cr%
r.
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Using radial symmetry one obtains∫
B
||x||dx =

∫ 1

0
ρ2 dVr = Cr

∫ 1

0
rρ2ρr−1 dρ = rCr

∫ 1

0
ρr+1 dρ =

rCr
r + 2

.

This implies that

E[||x− y||2] =
2r

r + 2
.
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Model τ2 φ κ ESS ÊSS sd(ÊSS)

0,01 0.1 0.5 19.85 22.10 13.89
0,1 0.1 0.5 21.08 24.28 14.48
1 0.1 0.5 31.58 42.18 28.96
10 0.1 0.5 69.96 100 0.00

(1) 0,01 0.5 0.5 3.18 5.43 4.98
0,1 0,5 0.5 3.40 7.03 6.92
1 0,5 0.5 5.67 17.21 21.62
10 0,5 0.5 22.84 100 0.00
0,01 1 0.5 1.97 4.41 4.51
0,1 1 0.5 2.11 5.37 5.87
1 1 0.5 3.57 25.58 33.12
10 1 0.5 15.77 100 0.00

0,01 0.1 – 68.57 68.93 19.69
0,1 0.1 – 69.96 71.65 18.47
1 0.1 – 79.30 70.52 30.67
10 0.1 – 94.93 100 0.00

(2) 0,01 0.5 – 10.20 11.01 5.97
0,1 0,5 – 10.80 11.84 6.20
1 0,5 – 16.94 23.52 21.15
10 0,5 – 49.88 100 0.00
0,01 1 – 19.85 6.04 4.24
0,1 1 – 21.08 7.29 6.03
1 1 – 31.58 15.52 18.72
10 1 – 69.96 100 0.00

0,01 0.1 ∞ 32.28 32.80 12.11
0,1 0.1 ∞ 33.19 34.25 12.09
1 0.1 ∞ 44.85 50.20 26.23
10 0.1 ∞ 79.84 100 0.00

(3) 0,01 0.5 ∞ 4.45 5.46 1.97
0,1 0,5 ∞ 4.21 5.09 2.10
1 0,5 ∞ 6.45 12.81 17.90
10 0,5 ∞ 23.72 100 0.00
0,01 1 ∞ 2.52 2.77 0.83
0,1 1 ∞ 2.49 4.28 7.49
1 1 ∞ 3.55 25.85 33.33
10 1 ∞ 13.70 100 0.00

Model τ2 φ κ ESS ÊSS sd(ÊSS)

0,01 0.1 1 12.23 50.70 33.23
0,1 0.1 1 12.96 48.63 32.93
1 0.1 1 20.23 55.30 35.00
10 0.1 1 55.72 91.02 21.12

(4) 0,01 0.5 1 2.79 19.18 24.21
0,1 0,5 1 2.37 23.26 26.84
1 0,5 1 3.88 48.19 39.74
10 0,5 1 16.29 20.79 22.00
0,01 1 1 1.53 11.00 15.65
0,1 1 1 1.60 17.91 24.80
1 1 1 2.65 62.98 40.84
10 1 1 12.18 95.92 15.16

0,01 0.1 1.5 9.34 43.96 34.11
0,1 0.1 1.5 9.79 46.21 34.93
1 0.1 1.5 15.44 56.97 34.25
10 0.1 1.5 47.24 86.14 26.27

(5) 0,01 0.5 1.5 1.99 12.37 16.36
0,1 0,5 1.5 2.03 17.48 23.25
1 0,5 1.5 3.26 44.51 40.19
10 0,5 1.5 13.89 92.91 19.22
0,01 1 1.5 1.42 4.13 6.66
0,1 1 1.5 1.45 10.68 19.50
1 1 1.5 2.35 68.40 41.40
10 1 1.5 11.13 31.28 37.19

0,01 0.1 2.5 6.85 32.9 31.03
0,1 0.1 2.5 7.02 44.76 33.55
1 0.1 2.5 11.07 51.43 35.11
10 0.1 2.5 37.47 24.52 27.61

(6) 0,01 0.5 2.5 1.77 5.07 5.15
0,1 0,5 2.5 1.78 8.38 15.10
1 0,5 2.5 2.72 41.51 41.70
10 0,5 2.5 11.99 35.24 39.70
0,01 1 2.5 1.38 3.67 8.33
0,1 1 2.5 1.32 17.25 28.04
1 1 2.5 2.13 67.08 41.81
10 1 2.5 10.50 93.13 19.63

Table 2: ESS = 1>R(θ)−11 and ÊSS = 1>R(θ̂REML)−11. The values reported under the ÊSS columns

are the simulation averages obtained using 500 runs. sd(ÊSS) corresponds to the simulation standard
deviation. Model (1): Exponential; Model (2): Spherical; Model (3): Gaussian; Model (4), (5) and (6):
Matérn.
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Spherical Model

τ2 φ ESS ÊSS sd(ÊSS) n∗ n̂∗ sd(n̂∗) N̂ sd(N̂) ρ1 ρ2
0.01 0.10 139.05 154.56 40.64 123.45 141.36 37.73 2256.80 9235.18 0.99 0.07
0.10 0.10 145.17 157.64 35.82 130.40 145.87 33.22 1206.58 2661.64 0.99 0.07
1.00 0.10 192.31 218.42 57.17 182.95 211.09 57.04 1311.35 4164.02 0.99 0.03
10.00 0.10 307.24 360.00 0.00 306.12 360.01 0.00 381.94 915.89 – –
0.01 0.50 11.35 12.97 5.32 8.67 10.18 4.83 124.82 341.91 0.99 0.21
0.10 0.50 12.17 13.54 5.72 9.39 10.80 5.24 102.14 238.64 0.99 026
1.00 0.50 20.16 24.48 14.89 16.63 21.03 14.38 204.69 1996.54 0.99 0.00
10.00 0.50 81.42 360.02 0.00 75.82 360.05 0.00 114.72 424.87 – –
0.01 1.00 4.76 7.33 5.10 3.03 5.44 4.41 269.75 2672.58 0.99 0.09
0.10 1.00 5.06 8.65 7.07 3.39 6.60 6.34 111.28 478.42 0.99 0.32
1.00 1.00 8.48 27.87 60.53 5.98 25.11 60.20 154.65 1214.33 0.99 0.03
10.00 1.00 36.68 360.08 0.00 30.33 360.03 0.00 102.02 523.53 – –

Exponential Model

τ2 φ ESS ÊSS sd(ÊSS) n∗ n̂∗ sd(n̂∗) N̂ sd(N̂) ρ1 ρ2
0.01 0.10 23.96 27.82 13.58 20.67 24.59 12.77 310.81 819.74 0.99 0.19
0.10 0.10 25.76 30.16 16.54 22.45 26,86 15.63 260.63 676,88 0.99 0.18
1.00 0.10 42.61 47.87 32.13 38.73 44,14 31.57 289.65 744,65 0.99 0.28
10.00 0.10 147.05 360.09 0.00 143.48 360,09 0.00 321.24 3568,27 – –
0.01 0.50 3.47 5.90 5.11 2.60 4.75 4.36 145.32 438.89 0.99 0.36
0.10 0.50 3.69 7.52 7.40 2.88 6.28 6.57 181.36 810.53 0.99 0.20
1.00 0.50 6.26 15.54 20.96 5.06 13.77 19.88 814.38 14317.26 0.99 0.01
10.00 0.50 28.70 360.08 0.00 26.17 360.03 0.00 428.92 4974.51 – –
0.01 1.00 2.059 4.69 4.92 1.75 3.84 4.18 401.31 3015.71 0.99 0.45
0.10 1.00 2.20 5.86 6.82 1.80 4.87 6.00 230.04 977.68 0.99 0.38
1.00 1.00 3.84 18.66 39.79 3.33 17.11 39.00 297.32 2678.93 0.99 0.10
10.00 1.00 18.40 360.02 0.00 17.28 360.09 0.00 129.57 363.65 – –

Gaussianl Model

τ2 φ ESS ÊSS sd(ÊSS) n∗ n̂∗ sd(n̂∗) N̂ sd(N̂) ρ1 ρ2
0.01 0.10 41.17 43.71 30.24 34.82 38.33 30.38 394.38 810.08 0.99 0.30
0.10 0.10 42.98 45.74 17.70 37.61 40.62 17.39 485.76 1701.27 0.99 0.07
1.00 0.10 67.64 93.19 82.22 63.08 88.93 83.33 476.89 2124.72 0.99 0.12
10.00 0.10 196.01 360.05 0.00 193.80 360.08 0.00 309.27 1851.47 – –
0.01 0.50 4.87 5.57 1.43 2.55 3.19 1.12 96.26 340.16 0.98 0.23
0.10 0.50 4.75 5.84 2.55 2.72 3.71 2.21 84.63 338.29 0.99 0.21
1.00 0.50 7.28 11.35 12.26 4.94 8.77 11.51 664.50 13002.22 0.99 0.15
10.00 0.50 31.39 360.02 0.00 25.60 360.01 0.00 83.18 330.72 – –
0.01 1.00 2.76 3.30 1.04 1.49 1.89 0.75 261.13 1324.11 0.98 0.22
0.10 1.00 2.63 4.00 3.44 1.56 2.60 2.90 142.53 458.66 0.99 0.37
1.00 1.00 4.28 20.65 46.75 2.76 18.53 46.12 364.21 2196.59 0.99 0.21
10.00 1.00 16.52 360.04 0.00 14.33 360.01 0.00 136.38 645.65 – –

Table 3: Study of the behavior of ÊSS, n̂∗, and N̂ . In the last two columns ρ1 = cor(ÊSS, n̂∗) and

ρ2 = cor(ÊSS, N̂).
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Arsenic (As)

Model κ σ2 φ τ2 MSE ÊSS

Spherical – 1.10 1000.61 1.27 0.03 41.24
Exponential 0.5 1.88 286.74 0.90 0.07 44.01
Gaussian ∞ 1.29 442.76 1.55 0.05 49.47
Cubic – 1.36 1104.26 1.55 0.04 47.19
Circular – 1.64 788.54 1.28 0.04 50.09
Cauchy – 1.81 143.37 1.11 0.07 15.69
Matern (κ = 0.5) 0.16 3.08 884.13 0.04 0.63 17.01
Matern (κ = 1) 0.35 2.12 429.12 0.77 0.09 30.84
Matern (κ = 2) 0.35 2.12 429.04 0.77 0.09 30.84

Lead (Pb)

Model κ σ2 φ τ2 MSE ÊSS

Spherical – 1.28 551.87 0.79 0.03 87.65
Exponential 0.5 1.67 215.07 0.45 0.03 58.42
Gaussian ∞ 1.02 286.74 1.04 0.03 83.03
Cubic – 1.02 673.94 1.03 0.03 87.08
Circular – 1.26 435.93 0.77 0.03 101.62
Cauchy – 1.53 143.37 0.79 0.04 14.89
Matern (κ = 0.5) 0.18 2.55 884.13 0.00 0.43 15.75
Matern (κ = 1) 0.29 2.02 312.04 0.14 0.09 45.90
Matern (κ = 2) 0.29 2.02 312.17 0.14 0.09 45.88

Table 4: ÊSS for As and Pb for different covariance models. MSE =
∑

h(γ(h)−γ̂(h))2

M
, where M is the

number of points where the empirical variogram was computed. The first Matérn model was fitted using
κ = 0.5 as a starting point. The other two Matérn models were fitted using respectively κ = 1 and κ = 2
as starting points.
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Basal Area

Model κ σ2 φ τ2 MSE ÊSS sd(3) sd(4) sd(6)

Spherical – 2.58 1803.87 1.94 0.08 42.31 13.17 4.52 5.60
Exponential 0.5 2.91 1115.82 1.88 0.08 17.09 2.86 2.53 5.47
Gaussian ∞ 2.15 691.22 2.20 0.09 58.33 4.31 12.18 5.24
Cubic – 3.22 2479.60 2.31 0.96 29.80 11.98 5.83 6.41
Circular – 3.39 2247.08 2.01 0.66 24.41 10.48 5.14 8.10
Cauchy 0.5 3.15 565.10 2.16 0.12 8.64 0.94 2.13 3.21
Matern (κ = 0.5) 0.64 3.69 1239.80 2.02 0.69 14.13 2.55 1.45 20.70
Matern (κ = 1) 0.72 3.31 991.83 2.05 0.50 19.62 14.65 4.56 20.29
Matern (κ = 2) 1.27 2.57 495.89 2.13 0.27 56.47 24.76 7.64 20.94

Height

Model κ σ2 φ τ2 MSE ÊSS sd(3) sd(4) sd(6)

Spherical – 0.82 2252.61 0.18 0.08 22.83 5.21 5.52 6.37
Exponential 0.5 0.64 619.49 0.12 0.05 28.76 8.08 2.06 2.03
Cubic – 0.82 2626,87 0,28 0,12 22,56 3,96 3,71 4,25
Circular – 0.75 1751,06 0,18 0,06 28,68 3,10 9,27 7,65
Cauchy 0.5 0.77 495,59 0,24 0,07 7,60 1,95 3,21 0,92
Matern (κ = 0.5) 0.70 0.83 867.29 0.20 0.09 18.62 3.08 7.37 1.79
Matern (κ = 1) 0.72 0.82 841.22 0.20 0.08 19.49 5.40 8.85 3.50
Matern (κ = 2) 0.72 0.82 841.20 0.20 0.08 19.49 17.59 7.49 17.95

Table 5: ÊSS for basal area and height for different covariance models. MSE =
∑

h(γ(h)−γ̂(h))2

M
, where

M is the number of points where the empirical variogram was computed (by default M = 13). The first
Matérn model was fitted using κ = 0.5 as a starting point. The other two Matérn models were fitted using
respectively κ = 1 and κ = 2 as starting points. In columns 8-10, sd(i) stands for the Sherman block
bootstrap variance of the effective sample size computed using i blocks.
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