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Abstract

This paper provides a framework for estimating the effective sample size in a
spatial regression model context when the data have been sampled using a line
transect scheme and there is an evident serial correlation due to the chronological
order in which the observations were collected. We propose a linear regression
model with a partially linear covariance structure to address the computation of the
effective sample size when spatial and serial correlations are present. A recursive
algorithm is described to separately estimate the linear and nonlinear parameters
involved in the covariance structure. The kriging equations are also presented to
explore the kriging variance between our proposal and a typical spatial regression
model. An application in the context of marine macroalgae, which motivated the
present work, is also presented.

Keywords: Effective sample size; line transects; spatial association; ARMA processes;
marine macroalgae.

1 Introduction

Lessonia trabeculata (Chilean kelp), a macroalgae that grows off the northern and cen-
tral coasts of Chile, is important because it is related to the ecosystem. Vasquez and
Santelices (1990) reported the negative effects of harvesting and kelp removal. Lessonia
trabeculata became important in 1978, when it began to be regularly exported from Chile
as a raw material for producing alginate. To maintain continuous surveillance over this
species off the central coast of Chile and exploit it in an organized way, the government
of Chile created protected areas reserved for artisanal fisheries (AMERB in Spanish),
which can be exploited by a small group of previously registered fisheries (see http://

www.subpesca.cl/institucional/602/w3-article-79853.html). The Chilean gov-
ernment determined that the Chilean Fisheries Research Institute (Instituto de Fomento
Pesquero (IFOP)) is in charge of conducting studies to evaluate the abundance of the
species that are present in the AMERB areas. The dataset that is analyzed in this paper
is from one of the studies performed by IFOP in 2012, in which the main goal was to
determine the equivalent number of independent observations to use in posterior studies
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assuming that the spatial correlation associated with the new dataset is the same as that
in the present case.

To address the quantification of the equivalent number of independent observations,
it is necessary to extend the notion of spatial effective sample size for models that ad-
equately represent the variable under study. This requires considering the sampling
scheme used to collect the data and the type of correlation to be considered in the sta-
tistical model to be developed. Griffith (2005) proposed a formula for computing the
spatial effective sample size for spatial regression models. This coefficient is based on the
computation of the variation inflation factor associated with the regression model, but
the formula depends solely on the covariance structure of the model, which can assume
several patterned forms but is not sufficiently flexible to consider serial correlation, for
example. Subsequently, Vallejos and Osorio (2014) developed a formula for computing
the spatial effective sample size based on the Fisher information quantity for the mean of
a spatial regression process with a constant mean. Although this approach has a different
motivation, in practice, it is comparable to Griffith’s proposal. Unfortunately, none of
these approaches consider including serial correlation (Dale and Fortin, 2009) as an extra
term in the correlation structure when a line transect sampling scheme has been used
to collect the data (e.g., Hedley and Buckland, 2004). Moreover, we could not find a
solution to this problem in the vast literature about the effective sample size in different
contexts. For example, Faes et al. (2009) discussed the notion of effective sample size for
mixed effects models with replicates. Seminal works treating the reduction of sample size
or degrees of freedom can be found in Box (1954a,b), Clifford et al. (1989), and Dutilleul
(1993), among others.

In this paper, we quantify the spatial effective sample size for a macroalgae dataset
collected off the central coast of Chile. Because this dataset was collected using line
transects and because a chronological order exists between each pair of observations, as
described in Section 2, we propose quantifying the effective sample size for a regression
model with a constant mean but with a partially linear covariance structure, which al-
lows us to include the existing spatial and serial correlations. Three aspects related to
the suggested model are developed in Section 3: the covariance structure, the estima-
tion process, and prediction. The estimation is performed using a recursive algorithm
developed for partially linear covariance structures, which is a variant of the well-known
maximum likelihood method. The full analysis of the macroalgae dataset, including the
estimation of the effective sample size for the density of the Chilean kelp in an AMERB
study area, located off the central coast of Chile, will be discussed in Section 4. This
includes results obtained under different spatial correlation models.

The broader impacts resulting from this research lie in its contributions to science,
particularly in a country where climatic effects and disasters are constantly changing the
conditions in which the species described in this paper can be studied.

2 The Macroalgae Dataset

To determine a procedure for the sampling scheme and the posterior methodological
analysis of data collected from the AMERB areas, in 2012, the IFOP held a meeting
with experts in the area to establish a protocol to follow in future investigations. After
defining the area to be sampled and the species, they followed the recommendations of
experts to conduct a study on Lessonia trabeculata (Chilean kelp) from the AMERB
area located in Punta Lunes (Ventana, comuna de Puchuncavi), Chile. This area was
chosen because the species are located at a depth of no more than 20 m and because
the experts are knowledgeable of the existence of species with different sizes. The region
to be sampled has an area from north to south that is approximately 2.12 km long. In
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addition, a free access area 1 km long was considered in the study.
To conduct the study, 26 line transects were defined perpendicular to the coastline.

Each line transect was 100 or 200 m long and separated from each other by 100 m, as
shown in Figure 1. The original line transects were designed to be perfectly perpendicular
to the coastline and to have an exact length of 200 m; however, because of the weather
conditions or the topography of the coast, the resulting line transects are those shown in
Figure 1.

For each line transect and every 10 m within each transect, observations were collected
by divers who followed red marks located on underwater ropes. The density of Lessonia
trabeculata measured in several quadrants of 20 m2 was georeferenced and recorded for
posterior analysis. The total number of collected observations was 427. Note that there is
a chronological order among the collected observations because the divers followed the line
transects from north to south. The average time between two consecutive observations
was 5 min. The 427 observations obtained for the Lessonia trabeculata used in this study

Figure 1: Study area including the 26 transect locations where the observations were
collected. The study area is inside the rectangle (264000, 266500) × (6374500, 637700)
considering UTM coordinates. The gray rectangle contains 5 transects belonging to a
free access area.

are based on count data. Thus, alternatively to the treatment presented in this paper, a
model for count data (e.g., Poisson) might be useful.

Although in this paper we deal with the raw and transformed data, the transformation
that is introduced in Section 4.2 is used only to achieve normality. However, because the
variable of interest is the original density of Lessonia trabeculata, the exploratory data
analysis will be carried out for the raw dataset.
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3 Material and Methods

In this section, we provide three aspects related to the computation of the effective sample
size. First, a spatial model that includes spatial and serial autocorrelations is described.
Second, the estimation of the effective sample size is briefly developed. Third, spatial
prediction (kriging) for the macroalgae density will be presented.

3.1 Sampling and Modeling

Let us consider the spatial process {Y (s) : s ∈ D ⊂ R2}. We assume that the process
Y (·) has been measured at n distinct locations s1, . . . , sn and that the locations are
equispaced over m distinct line transects on D such that the measurements have been
sampled chronologically in time starting from the observations located on transect 1
until the last observations located on transect m. For simplicity, we assume that the
distance between locations in a given transect is fixed. In other words, the transect
sampling scheme occurs chronologically in time such that when the last observation on a
given transect is taken, the next observation is obtained from the next (closest) transect
following the same orientation as in the previous one. To clarify the sampling scheme
used in this work, in Figure 2, two typical sampling configurations are described. In both
cases, m transects have been located on the two-dimensional plane. If the transects are
not connected as in Figure 2 (b), the observations are taken sequentially, as shown by
the dashed lines.











(a)



(b)

Figure 2: (a) Sampling scheme with m connected transects; (b) sampling scheme with
m unconnected transects.

Let Y = (Y (s1), . . . , Y (sn))>, where > denotes the transpose of a vector, and

Y ∼ N (µ1,Σ(θ)), (1)

whereN (·, ·) denotes the normal distribution, µ ∈ R, 1 is an n×1 vector of ones, Σ(θ) is a
non-singular covariance matrix, and θ ∈ Rk is a vector of unknown parameters. Denoting
as R(θ) the correlation matrix associated with Σ(θ), Vallejos and Osorio (2014) defined
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the spatial effective sample size (ESS) of Y as the equivalent number of independent
observations associated with vector Y (Cressie, 1993) and corresponding to the Fisher
information number about µ.

Definition 1. Let {Y (s) : s ∈ D ⊂ Rd} be a random field such that for s1, . . . , sn ∈
D, the vector Y = (Y (s1), ..., Y (sn))> ∼ N (µ1,R(θ)), where R(θ) is a non-singular
correlation matrix. The quantity

ESS = 1>R(θ)−11, (2)

is called the effective sample size of Y .

Because in many different cases, the effective sample size lies in the interval [1, n], it
can be regarded as a reduction of the information due to the spatial association present
in the data. It is well known that as the spatial autocorrelation latent in georeferenced
data increases, the amount of duplicated information in these data also increases. Hence,
the effective sample size can be seen as a sample size compensation due to the spatial
association.

Commonly in spatial statistics, θ = (τ2, σ2, φ)> and Σ(θ) = τ2I + σ2Q1(φ), where
τ2 represents the nugget effect, σ2 is the variance of the process, and φ is related to
the range dependence of the spatial process. The spatial correlation structure can then
be described by a number of correlation functions, e.g., the Matérn covariance function
(Rasmussen and Williams, 2006, Chapter 4). A complete list of parametric models for
Q1(φ) can be found in Banerjee et al. (2004, p. 27). In this article, we consider the serial
correlation that could be present in the spatial data. This can be achieved by considering
the model

Y ∼ N (µ1,Σ(θ,ρ,ϕ)), (3)

where
Σ(θ,ρ,ϕ) = τ2I + σ2Q1(φ) + λ2Q2(ρ,ϕ),

θ = (τ2, σ2, φ, λ2)> and ρ,ϕ are parameter vectors containing information about the
serial autocorrelation. For example, if the temporal autocorrelation can be modeled by
an autoregressive moving average (ARMA) process, then Q2(·, ·) can be written as a
function of the autoregressive and moving average parameters ρ = (ρ1, . . . , ρp)

> and
ϕ = (ϕ1, . . . , ϕq)

>(Brockwell and Davis, 2006, Chapter 3). In particular, for an AR(1)
process,

Q2(ρ) =
1

1− ρ2


1 ρ . . . ρn−1

ρ 1 . . . ρn−2

...
...

...
...

ρn−1 ρn−2 . . . 1

 . (4)

Thus, the effective sample size associated with Y is given by

ESS = 1>R(θ,ρ,ϕ)−11, (5)

where R(θ,ρ,ϕ) is the correlation matrix corresponding to Σ(θ,ρ,ϕ).
The advantage of using (5) instead of (2) is the flexibility to include the serial corre-

lation that originally was not considered in model (1). This approach can also be useful
for other datasets when the spatial sampling has been planned such that the observations
are obtained sequentially in time.
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3.2 Estimation

We estimate the parameters of model (3) by maximizing the log-likelihood function

`(µ,θ,ρ,ϕ) = −n
2

ln(2π)− 1

2
ln |Σ| − 1

2
(Y − µ1)

>
Σ−1 (Y − µ1) , (6)

where Σ = τ2I + σ2Q1(φ) + λ2Q2(ρ,ϕ); for notational convenience, we ignore the
dependence of Σ on θ, ρ and ϕ. Rather, we define ω = (θ>,ρ>,ϕ>)>, a vector of size
p+ q + 4. When ω is known, the estimator of µ is

µ̂ =
(
1>Σ−11

)−1
1>Σ−1Y . (7)

Thus,

∂`

∂ωi
= −1

2
tr
{
Σ−1ΣiΣ

−1 (τ2Q0 + σ2Q1(φ) + λ2Q2(ρ,ϕ)
)}

+
1

2
tr{Σ−1ΣiΣ

−1C}, (8)

where Σi = ∂Σ/∂ωi, Q0 = I, and C = (Y − µ1)(Y − µ1)>. We follow the estimation
method proposed by Anderson (1973) to solve ∇` = 0, where iterative equations are
used, and the nonlinear term Σ−1ΣiΣ

−1 in Equation (8) is assumed to be an estimation
coming from a previous stage. In addition, µ and ω can also be iteratively estimated.
Given initial estimations µ(0) and ω(0) for µ and ω, respectively, the estimation method is
summarized in Algorithm 1 (see Appendix A). The nonlinear system stated in Equation
(A.3) can be solved, for instance, using a Newton type algorithm.

One way to obtain ω(0) is by estimating the spatial parameters from the empirical

variogram and the parameters λ2
(0)

, ρ(0) and ϕ(0) by the usual time series techniques.
In addition, µ(0) can be initially estimated by µ(0) = Y or by evaluating Σ at ω(0) in
equation (7).

The main advantage of the estimation method summarized in Algorithm 1 is its
flexibility and simplicity. One important feature noted by Szatrowski (1980) is that for
certain covariance structures, the algorithm has an explicit solution. Other authors (e.g.,
Rubin and Szatrowski, 1982) explored the connection between this estimation method
and the EM algorithm to simplify the iterative step in the estimation process. We stress
the fact that the method described by Algorithm 1 and the maximum likelihood method
are asymptotically equivalent.

3.3 Prediction

We provide the prediction equations for model (3); the kriging equations for model (1)
are available in any spatial statistics textbook. See, for instance, Cressie (1993, Chapter
3)

Suppose for now that the parameters of model (3) are known. Let Y0 = Y (s0) be a
new observation at s0, a non-observed site, and assume that(

Y0
Y

)
∼ N

((
µ
µ1

)
,

(
v0 w>

w Σ

))
,

(Banerjee et al., 2004). Under the quadratic loss function, the best linear predictor is
the conditional expectation of Y0 given Y . The distribution of Y0 | Y is then normal
with mean and variance defined through

E[Y0 | Y ] = µ+ w>Σ−1(Y − µ1),

var[Y0 | Y ] = v0 −w>Σ−1w,

6



where w> = (σ2Q1(φ, h01), . . . , σ2Q1(φ, h0n))+(λ2Q2(ρ, ϕ, t01), . . . , λ2Q2(ρ, ϕ, t0n)) and
v0 = τ2 + σ2 + λ2, with h0i = ‖s0 − si‖ and t0i = |ti − t0|, i = 1, . . . , n.

Model (3) was constructed with a transect sampling scheme in mind. Thus, the
observed sites are necessarily located on a transect. If ti denotes a time index for a
point located over a transect and t0 represents the index time of the nearest neighbor
observation to s0 for those points located over any transect, that is, t0 = tj∗ and

j∗ = argmin
i∈{1,...,n}

‖s0 − si‖,

then the autocorrelation between a variable associated with an unobserved site and the
variable associated with a point located on a given transect is ρ|t0−ti|. If the parameters
are unknown, similar equations can be derived in the same spirit of the universal kriging
using the estimates rather than the true parameters.

4 Analysis of Macroalgae Data

4.1 Exploratory Data Analysis

First, an exploratory data analysis was performed for the macroalgae dataset consisting
of the 427 observations related to the density of Lessonia trabeculata per 20 m2 in the
AMERB area in Punta Lunes, Puchuncavi, Chile. Considering the UTM coordinates,
the locations and the values of the density for the 427 sites are plotted in 3D in Figure 3.
We observe that the values corresponding to the six transects belonging to the free access
area are quite different compared with the remainder of the observations sampled from
the transects belonging to the AMERB area. This is because in the free access area,
there is human intervention without any restrictions. To make our study comparable
with similar AMERB areas, we will not consider the observations sampled over the six
transects belonging to the free access area in the computation of the effective sample
size. However, in the exploratory data analysis, the entire raw dataset will be used.

Considering all observations, we constructed a table with double entries to explore
the variance of the values as a function of the number of transects and the distance
between the locations where the density was measured within each transect. The results
are shown in Table 1. We observe that a simple exploratory data analysis allows us to

Table 1: Variance of the 427 observations for different numbers of line transects and
distances between measurements.

Number of Transect Lines 10 [m] 20 [m] 30 [m] 40 [m]
26 307.43 311.99 308.36 334.51
13 302.57 292.09 298.88 308.97
9 314.58 332.40 338.77 418.17
7 311.99 304.75 294.06 306.59
6 330.18 356.27 330.40 371.59

reduce either the sample size or the number of transects to produce a smaller variance.
The optimal combination occurs for 13 transects and 20 m, which represents a reduction
in the sample size equivalent to 70%. Obviously, this analysis does not consider the
existing spatial or temporal association in the data.
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Figure 3: 3D plot for the density of Lessonia trabeculata in the study area. The total
number of observations is 427.

Figure 4: Autocorrelation function (left) and partial autocorrelation function (right) for
the raw macroalgae data.

4.2 Building a Model

In Figure 4, the autocorrelation (ACF) and partial autocorrelation (PACF) functions of
the raw data are plotted. There is a clear serial dependence because the ACF rapidly
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decreases to zero, and the PACF has few lags for which the correlation is significant
according to Bartlet’s test. An autoregressive time series model appears to be suitable
for representing the serial correlation that is present in the data. In Figure 5, empirical
and theoretical variograms for the macroalgae dataset are plotted. There is evidence
from the variogram plot that a spatial association exists among the observations. Thus,
a suitable model for the density of the macroalgae should include both serial and spatial
correlations.

Figure 5: Empirical and some theoretical variograms for the macroalgae data. The
distance in the x–axis is measured in meters.

Considering the foregoing comments, we propose using model (3) with covariance
structures of the form

Σ = τ2I + σ2Q1(φ), (9)

Σ = τ2I + σ2Q1(φ) + λ2Q2(ρ), (10)

andQ2(ρ) is given in (4). Before fitting model (3), it is necessary to explore the Gaussian-
ity assumption. A preliminary analysis shows that normality in this case does not hold.
The skewness and kurtosis are 0.5313 and 0.7947, respectively, highlighting a departure
from normality. Moreover, the Shapiro–Wilk test rejects the normality hypothesis with
a p-value of 3.49×10−14. To overcome this drawback, we propose using a transformation
to symmetrize the original data.

Consider the transformation

Z(si) = ln(Y (si) + 2.586),

where 2.586 is the value that maximizes the correlation (0.9853) between the percentiles
of the normal distribution and the order statistics Z(i) (see Appendix B). In the case
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of using the Box–Cox transformation, this correlation is 0.9887, which is slightly higher
than the previous value.

4.3 Estimation and Prediction

The parameters of model (1) with the covariance structure (9) were estimated by five
different methods using the transformed data to achieve symmetry: the partially lin-
ear covariance (PLC) method described in Section 3.2, the maximum likelihood (ML)
method, the restricted maximum likelihood (REML) method, the ordinary least squares
(OLS) method, and the weighted least squares (WLS) method. Four isotropic covari-
ance models were fit to the density of Lessonia trabeculata. The Matérn model defined
through

C(h, φ) =

(
h
φ

)κ
Kκ

(
h
φ

)
2κ−1Γ(κ)

where Γ(·) is the gamma function, Kκ(·) is the modified Bessel function of the second
kind, and κ, φ are nonnegative parameters were used with κ = 0.5 (exponential case),
κ = 1.5, κ = 2.5, and κ→∞ (Gaussian case).

The results, including the computation of the effective sample size for the original
and transformed variables and the estimations of the parameters, are summarized in
Table 2. Here, the effective sample sizes range from 19.40 to 66.62 for the density of
Lessonia trabeculata. In general, we observe that the five estimation methods are very
comparable, yielding very similar estimations for the parameters of model (1). The
estimations obtained using the ML, REML, OLS, and WLS methods, which are reported
in Table 2, were computed using the R package geoR. In the estimation processes used
to obtain Table 2, the serial correlation in the data was disregarded to compare the PLC
method with other estimation methods that are currently available in R.

We use Algorithm 1 to estimate the parameters of model (1) with the covariance
structure (10)(at the moment, the geoR (Ribeiro and Diggle, 2015) package does not
have any routine available for estimating the ML parameters of the correlation structure
(10)). The serial correlation here is part of the covariance structure, and it was charac-
terized by an AR(1) process. Similar to the previous case, the effective sample size given
in (5) was computed for the original and transformed variables. We also considered the
approximations of first and second order of the effective sample size provided by Propo-
sition 1 in Appendix B. The results are presented in Table 3. The effective sample sizes
here range from 24.50 to 29.73 for the transformed variable and from 24.50 to 30.09 for
the original variable. These results are in agreement with the results shown in Table 2
because there is a reduction in the sample size owing to the inclusion of the time depen-
dence structure that is not present in model (1). From Proposition 1 in the Appendix,
the effective sample size for the first-order approximation of the effective sample size
coincides with the effective sample size of the transformed variable. This is valid only
for the log transformation.

The kriging estimator and its variance defined in Section 3.3 were evaluated for the
macroalgae dataset for models (1) and (3), and the maps are shown in Figure 6. We
observe that the kriging estimator associated with model (1) is smoother than the kriging
estimator associated with model (3). However, the kriging variance is smaller for model
(3), which is one expected advantage that relies on the fact that the serial correlation has
been considered. Finally, the R (R Core Team, 2015) code to perform the data analysis
and modeling described in this article are available upon request.
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Table 2: Effective sample sizes for the original and transformed variables associated with
the PLC, ML, REML, OLS, and WLS estimation methods of model (1) for different

covariance structures. SS(Ẑ) stands for the predicted sum of squares of model (1),
whereas ESSY (1) stands for the first-order approximation of the effective sample size of
Y , in accordance with the expansion given in Equation (B.4). The notation for ESSY (2)
and ESSY (∞) is similar.

Model Method µ̂Z τ̂2Z σ̂2
Z φ̂Z SS(Ẑ) ESSY (1) ESSY (2) ESSY (∞)

Exponential

PLC 1.2927 0.0048 0.0430 64.64 16.40 29.18 29.53 29.54
ML 1.2927 0.0048 0.0430 64.64 16.40 29.21 29.56 29.57
REML 1.2917 0.0048 0.0450 69.24 16.42 26.99 27.33 27.34
OLS 1.2877 0.0000 0.0502 82.40 16.50 20.45 20.70 20.70
WLS 1.2864 0.0034 0.0470 91.87 16.53 19.14 19.39 19.40

Matérn

PLC 1.2962 0.0085 0.0368 23.78 16.34 46.43 46.85 46.86
ML 1.2962 0.0085 0.0368 23.78 16.34 46.46 46.89 46.89

κ = 1.5
REML 1.2959 0.0085 0.0378 24.29 16.35 45.36 45.78 45.79
OLS 1.2923 0.0124 0.0376 50.00 16.41 22.95 23.22 23.23
WLS 1.2923 0.0123 0.0375 50.01 16.41 22.92 23.19 23.20

Matérn

PLC 1.2952 0.0096 0.0397 19.57 16.36 43.50 43.91 43.92
ML 1.2976 0.0090 0.0352 15.89 16.32 53.23 53.67 53.68

κ = 2.5
REML 1.2974 0.0090 0.0359 16.13 16.32 52.36 52.80 52.81
OLS 1.2922 0.0186 0.0319 50.00 16.41 19.71 19.97 19.98
WLS 1.2944 0.0189 0.0315 50.00 16.37 26.81 27.18 27.19

Gaussian

PLC 1.3000 0.0095 0.0328 38.95 16.28 66.14 66.60 66.61
ML 1.3000 0.0095 0.0328 38.95 16.28 66.13 66.59 66.60
REML 1.2999 0.0095 0.0333 39.43 16.29 65.31 65.76 65.77
OLS 1.2889 0.0000 0.0487 60.28 16.48 43.02 42.94 42.93
WLS 1.2479 0.0000 0.0486 63.60 17.93 41.09 41.01 40.99

Table 3: Effective sample size for the original and transformed variables associated with
the PLC estimation method of model (3) for different covariance structures. SS(Ẑ)
represents the predicted sum of squares of model (3).

Model µ̂Z τ̂2Z σ̂2
Z λ̂2Z φ̂Z ρ̂Z SS(Ẑ) ESSY (1) ESSY (2) ESSY (∞)

Exponential 1.307 0.004 0.017 0.025 86.87 0.860 16.20 24.50 24.83 24.83

Matérn 1.308 0.004 0.016 0.026 48.13 0.828 16.19 26.99 27.33 27.34
κ = 1.5

Matérn 1.308 0.004 0.016 0.026 34.15 0.822 16.19 28.68 29.02 29.03
κ = 2.5

Gaussian 1.308 0.004 0.016 0.026 102.05 0.814 16.19 29.73 30.08 30.09
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(a) Kriging predictor using
model (1).

(b) Kriging predictor using
model (3).

(c) Variance of the kriging
predictor under model (1).

(d) Variance of the kriging
predictor under model (3).

Figure 6: Kriging predictors and their variances under models (1) and (3).
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5 Discussion

The method proposed in this paper offers a general way to estimate the effective sample
size for models of the form (3) when the sampling scheme involves the use of line transects
and the observations have been taken chronologically in time. The reduction of the
sample size n in all cases reported in this article is severe owing to the inclusion of both
spatial and serial correlations in model (3). After computing the effective sample size,
new sampling strategies can be planned to obtain the equivalent number of independent
observations. A review of these techniques can be found in Griffith (2005). From our
experience with spatial data, a regular hexagonal tessellation sampling design is sufficient
for ensuring the representativeness of the areas in space.

The effective sample size was developed for a linear regression model with a constant
mean µ1. However, in practice, a constant mean could be a limitation because we might
learn from an exploratory analysis that the mean is not constant for certain areas in
space or that there are other covariates that have been measured for the same spatial
sites, and this information must be used. In this framework, a more realistic model is

Y = Xβ + ε, (11)

where X is an n× k design matrix containing the information of the covariates, β is an
unknown parameter vector, and ε ∼ N (0,Σ(θ)). To obtain a formula for the effective
sample size of Y in model (11), several issues should be addressed in advance, for example,
how to reduce the information contained in the Fisher information matrix about β to
a single number and how to create a measure of the effective sample size including the
information of the covariates but still lying on the interval [1, n]. One way to generalize
(2) is by considering a weighted effective sample size of the form

ESS =

k∑
i=1

vix
>
i R(θ)−1xi, (12)

where vi are weights to be specified, xi is the ith column of matrix X, and R(θ) is
the correlation matrix as before. This type of extension deserves attention in further
research. However, the estimation of ESS in (12) can be obtained by using either max-
imum likelihood or restricted maximum likelihood estimation methods. These methods
and their limiting distributions have been studied in a spatial statistics context in Mardia
and Marshall (1984) and Cressie and Lahiri (1996), respectively. These methods repre-
sent two possible avenues for further research in the estimation of the effective sample
size for spatial regression models with covariates.

Algorithm 1 was specifically constructed for the estimation of model (3). However, it
can be generalized to estimate the parameters of models with a partially linear structure
for the mean and for the covariance function. For instance, the models considered in the
Monte Carlo simulation studies conducted by Crujeiras and Van Keilegom (2010) are
special cases of models with partially linear components in the mean function. Moreover,
regular techniques commonly used in numerical analysis can be employed to make this
type of algorithm efficient.

One important aspect that should be stressed in the analysis of real datasets developed
in Section 4 is the simplicity in computing the sample size associated with a transformed
sample via the Box–Cox transformation. The result provided in the Appendix ensures
that under a first-order Taylor expansion, the effective sample size before and after the
logarithm transformation is the same. This result can be extended for the general Box–
Cox function. In addition, the kriging analysis and the performed hypothesis testing
provide empirical support for the adequacy of model (3). The reduction of information
of the ESS when using model (3) provides good insights regarding the adequacy of the
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correlation structure proposed in this article. An alternative to the Box–Cox transfor-
mation that allows one to handle the asymmetry and kurtosis is the proposal studied by
Field and Genton (2006). These authors extended the family of distributions g-and-h to
a multivariate context, considering the stochastic representation

Y = η +Bτg,h(Z),

where η ∈ Rn and Σ = BB> are a position vector and an arbitrary scale matrix,
respectively, B is a full rank matrix, and τg,h(Z) denotes the transformation of the
random vector Z = (Z1, . . . , Zn)> ∼ Nn(0, I) defined as

τg,h(Z) = (τg1,h1
(Z1), . . . , τgn,hn(Zn))>, (13)

for the vectors g = (g1, . . . , gn)>, h = (h1, . . . , hn)> and

τgi,hi(Zi) =
1

gi
(exp(giZi)− 1) exp(hiZ

2
i /2), i = 1, . . . , n.

For the vectors g and h, the expected information matrix for µ is

E{W 2
τ (Z)}1> cov(Y )1 = E{W 2

τ (Z)}1>B cov{τg,h(Z)}B>1

= E{W 2
τ (Z)}1>BΛB>1, (14)

where Wτ (z) = ḟτ (z)/fτ (z) with fτ (z) being the joint density function of the random
vector τg,h(Z) given in (13), and Λ = diag(λ1, . . . , λn) with λi = var(τgi,hi(Zi)). Given
the independence between the elements of τg,h(Z), it is straightforward to obtain the
joint density of fτ (z) and the variances var(τg1,h1

(Z1)), . . . , var(τgn,hn(Zn)) invoking the
procedure proposed by Headrick et al. (2008). We recall that Equation (14) is similar
to a result given in Definition 3 of Vallejos and Osorio (2014). Another alternative to
handle asymmetric data with heavy tail distributions is the class of the variance-mean
mixture of normal distributions (Barndorff-Nielsen et al., 1982), which has been applied
in finance and physics. Although efforts have been made to develop suitable algorithms
to estimate the parameters in this class of distributions (see, for instance Protassov, 2004)
to the best of our knowledge, results regarding the Fisher information matrix have not yet
been studied and represent an interesting matter for future research. Furthermore, the
parameter estimation of the multivariate distributions g-and-h in the context of spatial
modelling is a challenging problem to be tackled in further research. In particular, the
algorithm proposed by Field and Genton (2006) must be adapted for use in a model such
as (3).

The present work constitutes an important advance in the design of protocols in IFOP
that can be applied in the future when they plan a new study in the same study area
under similar conditions to those described in this paper.
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Appendix

A The Estimation Algorithm

Algorithm 1 Partially Linear Covariance (PLC) Algorithm.

1: Set l = 0.
2: Compute

Q
(l)
1 = Q1(φ(l)), Q

(l)
2 = Q2(ρ(l),ϕ(l)), Q̇

(l)
1,φ =

∂Q1

∂φ

(
φ(l)
)
,

Q̇
(l)
2,ρi

=
∂Q2

∂ρi

(
ρ(l),ϕ(l)

)
, i = 1, . . . , p,

Q̇
(l)
2,ϕi

=
∂Q2

∂ϕi

(
ρ(l),ϕ(l)

)
, i = 1, . . . , q,

Σ(l) = Σ(ω(l)), C(l) = (Y − µ(l)1)(Y − µ(l)1)>.

3: Update the linear parameters of Σ through the linear system

A(l)
(
τ2

(l+1)
σ2(l+1)

λ2(l+1)
)>

= b(l), (A.1)

where A(l) = (a
(l)
ij ), b(l) = (b

(l)
i ), a

(l)
ij = tr{(Σ(l))−1Q

(l)
i−1(Σ(l))−1Q

(l)
j−1}, and b

(l)
i =

tr{(Σ(l))−1Q
(l)
i−1(Σ(l))−1C(l)}, i, j = 1, 2, 3.

4: Solve the nonlinear equation g(φ) = 0 to obtain φ(l+1), where

g(φ) = tr
{

(Σ(l))−1Q̇
(l)
1,φ(Σ(l))−1

h
τ2

(l+1)
I + σ2(l+1)

Q1(φ) + λ2(l+1)
Q

(l)
2 −C

(l)
]}

.

The Newton–Raphson algorithm provides a recursive expression for φ(l+1) given by

φ(l+1) = φ(l) − σ2(l+1)
tr
{

(Σ(l))−1Q̇
(l)
1,φ(Σ(l))−1Q̇

(l)
1,φ

}
g(φ(l)). (A.2)

5: Obtain ρ(l+1) and ϕ(l+1) by solving (e.g., using the Newton–Raphson algorithm) the non-
linear system ρ

h(ρ,ϕ) = 0,
f(ρ,ϕ) = 0,

(A.3)

where h = (h1, . . . , hp), f = (f1, . . . , fq),

hi(ρ,ϕ) = tr
{

(Σ(l))−1Q̇
(l)
2,ρi

(Σ(l))−1
h
τ2

(l+1)
I + σ2(l+1)

Q
(l)
1 + λ2(l+1)

Q2(ρ,ϕ)−C(l)
]}

,

fj(ρ,ϕ) = tr
{

(Σ(l))−1Q̇
(l)
2,ϕj

(Σ(l))−1
h
τ2

(l+1)
I + σ2(l+1)

Q
(l)
1 + λ2(l+1)

Q2(ρ,ϕ)−C(l)
]}

,

for i = 1, . . . , p and j = 1, . . . , q.
6: Compute

Σ(l+1) = Σ(ω(l+1)),

µ(l+1) =
(
1>(Σ(l+1))−11

)−1

1>(Σ(l+1))−1Y .

7: If ‖(µ(l+1),ω>
(l+1)

)− (µ(l),ω>
(l)

)‖ < γ or |`(µ(l+1),ω>
(l+1)

)− `(µ(l),ω>
(l)

)| < γ, stop and
set bµ = µ(l+1) and bω = ω(l+1); otherwise, l = l + 1 and return to Step 2. γ is a fixed
tolerance constant. In general, typical values for the tolerance constant γ are 10−3 or 10−6.
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B The Box–Cox Transformation

The following function was proposed by Box and Cox (1964)

Zδ(s) =

{
(Y (s)+δ2)

δ1−1
δ1

; δ1 6= 0,

ln(Y (s) + δ2) ; δ1 = 0,
(B.1)

where Y (s) is the original variable, and δ = (δ1, δ2) is an unknown parameter vector to
be estimated to achieve normality of the transformed variable Z(·). Given the vector of
spatial observations (Z(s1), . . . , Z(sn))>, δ can be estimated (Box and Cox, 1964) by
maximizing the likelihood function

L(δ) = −n
2

ln

(
1

n

n∑
i=1

(Zδ(si)− Z̄(si)
2

)
+ (δ1 − 1)

n∑
i=1

ln(Y (si) + δ2). (B.2)

An alternative way to estimate δ is to find the optimal value that maximizes the cor-
relation between Φ−1 ((i− 0.5)/n) and Z(i), where Φ−1 is the inverse of the cumulative
distribution function of Z(si), and Z(i) is the order statistic associated with Z(si), for
i = 1, . . . , n; (see Kutner et al., 2004).

Using the logarithm transformation (δ1 = 0), it is possible to obtain an approximated
expression that relates the ESS for the original and transformed variables.

Proposition 1. Suppose that Z = (Z(s1), . . . , Z(sn))> ∼ N (µZ ,ΣZ) and consider the
transformation

Z(si) = ln(Y (si) + δ2), i = 1, . . . , n, (B.3)

where Y = (Y (s1), . . . , Y (sn))> is the original spatial sample. Let RZ and RY be the
correlation matrices of Z and Y , respectively. If (µZ)i = µ, and (ΣZ)ii = σii = σ̃2, i =
1, . . . , n, then

(RY )ij = c · (RZ)ijkij + o
(
|σ̃2|m

)
, (B.4)

where c =
σ̃2

exp(σ̃2)− 1
and kij = 1 +

σij
2

+ · · · +
σm−1ij

m!
. Furthermore, (RY )ij =

c

σ̃2
(eσij − 1) as m→∞.

Proof. Because Z(si) is normally distributed, Y (si) has a lognormal distribution with

E[Y (si)] = eµi+0.5σ̃2

− δ2,

cov(Y (si), Y (sj)) = eµi+µj+σ̃
2

(eσij − 1) ,

for i, j = 1, . . . , n.
Using a Taylor expansion for the function eσij , one obtains

cor(Y (si), Y (sj)) =
eµi+µj+σ̃

2

(eσij − 1)

eµi+µj+σ̃
2
(
eσ̃2 − 1

)
=

1

eσ̃2 − 1
σij

(
1 +

σij
2

+ · · ·+
σm−1ij

m!

)
+

1

eσ̃2 − 1
o
(
|σ̃2|m

)
=

σ̃2

eσ̃2 − 1

σij
σ̃2
kij + o

(
|σ̃2|m

)
= c · (RZ)ijkij + o

(
|σ̃2|m

)
,
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where cor(Z(si), Z(sj)) = (RZ)ij =
σij
σ̃2

, kij = 1+
σij
2

+· · ·+
σm−1ij

m!
and c =

σ̃2

exp(σ̃2)− 1
.

Moreover, if m→∞ we have that

cor(Y (si), Y (sj)) =
eσij − 1

eσ̃2 − 1
=

c

σ̃2
(eσij − 1)
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18


	Introduction
	The Macroalgae Dataset
	Material and Methods
	Sampling and Modeling
	Estimation
	Prediction

	Analysis of Macroalgae Data
	Exploratory Data Analysis
	Building a Model
	Estimation and Prediction

	Discussion
	The Estimation Algorithm
	 The Box–Cox Transformation

