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Abstract

Generalized linear mixed models form a general class of random effects models for discrete and continuous
response in the exponential family. Spatial GLMM are an extension of such models that allows us to
fit spatial-dependent data. A popular model in this class is the probit-normal model. In this study we
develop a novel exact algorithm to estimate a probit spatial generalized linear mixed models (GLMM)
that fits binary point-reference spatial data. The spatial dependence in this model is taking into account
in the covariance matrix of the location-specific random effects. GLMM are generally hard to estimate
due to the high-dimensional integrals involved. Popular methods such as PQL, Laplace, etc. overcome
this problem by approximating these integrals from which biased estimators can be obtained. In this
study we implement a stochastic version of the EM algorithm that allows to obtain the ML and REML
estimates of the parameters in the model without incurring into any kind of approximations, therefore
allowing us to obtain more reliable estimators.
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1. Introduction

A popular class of GLMM is the probit–normal model for analyzing binary as well as ordi-
nal data. Models for binary response variables are important in many fields of research, since
subjects are often classified in two categories. Additionally, it is often the case that subjects
are observed nested within clusters or are repeatedly assessed across time. For data that are
clustered and/or longitudinal, mixed-effects regressions models have been developed primarily
to model continuous but also dichotomous.
A convenient way to represent such model consists of discretizing a latent continuous distribution
with a threshold. This has been extensively used in the biometric and econometric literature
(see Ashford and Sowden, 1970; McFadden, 1989; Hausman and Wise, 1978).
Spatial GLMMs are commonly used for count or proportion data obtained over a continuous spa-
tial domain (see for example Diggle et al., 1998; Zhang, 2002; Zhao et al., 2006). Non-Gaussian
point-referenced spatial data are frequently modelled using GLMM with location-specific ran-
dom effects. Then, the spatial dependence can be introduced in the covariance matrix of the
random effects (see Gemperli and Vounatsou, 2003 for a logit spatial model).
Maximum likelihood estimation of parameters in GLMM is difficult as the exact likelihood func-
tion involves an intractable high–dimensional integration. Therefore, several approximations to
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the likelihood function have been proposed in the literature (Schall, 1991; Breslow and Clay-
ton, 1993; Wolfinger, 1992). Many of these approaches are reviewed in McCulloch (1997) and
Rodŕıguez and Goldman (1995). The most frequently used methods are based on the first– or
second– order Taylor expansion. Among them, the penalized quasi-likelihood (PQL) by Breslow
and Clayton (1993) is one of the most popular. It approximates the high-dimensional integra-
tion using Laplace approximation. However as reported by several authors (Breslow and Lin,
1995; Rodŕıguez and Goldman, 1995; Raudenbush et al., 2000) this procedure usually produces
estimates of variance components that are severely biased downward.
Numerical integration can also be used to perform the integration over the random–effects dis-
tribution. Gauss–Hermite quadrature can be used to approximate the above integral to any
practical degree of accuracy.
Alternatively, Bayesian inference can be carried out with Markov Chain Monte Carlo (MCMC)
and implemented via e.g. Gibbs Sampling (Albert and Chib, 1993).
The purpose of this article is to propose an exact estimation procedures to obtain ML and
REML estimates in the spatial probit model for binary data using a stochastic version of EM,
namely the SAEM algorithm (Delyon et al., 1999). This work is a natural extension of Meza
et al. (2009). We introduce an alternative to the Monte Carlo EM algorithm (Natarajan and
Kiefer, 2000 and Zhou and Liu, 2008) in the context of the spatial GLMM.
The structure of this article is as follows. Section 2 presents the spatial probit normal mixed
model for binary outcomes and the SAEM algorithm is described in Section 3. A simulation
study is presented in Section 4 to illustrate the properties of the REML estimates compared to
ML in the spatial mixed–effects probit normal model.

2. Spatial mixed–effects probit model

Let yij be the outcome of a dichotomous variable corresponding, for example, to the mortality
risk of child j at site si, i = 1, · · · , n taking value 1 if the child survived the first year of life and
0 otherwise. The probability pij of a positif event, i.e. yij = 1, can be expressed in terms of the
standard normal cumulative distribution function (probit model).
We study the spatial GLMM with the probit link:

yij ∼ Ber(pij), with (1)

pij = P (yij = 1)

= Φ(X ′
ijβ + φi).

Then
Φ−1(pij) = X ′

ijβ + φi, 1 ≤ i ≤ n, 1 ≤ j ≤ ni

where Φ(·) denotes the normal cumulative distribution function andXij is a p known vector. The
spatial variation is represented by the unobserved random vector φ = (φ1, · · · , φn) ∈ R

n which
follows a Gaussian distribution Nn(0,Γ), where Γii⋆ is a parametric function of the distance dii⋆

between locations si and si⋆ , with i, i⋆ = 1, · · · , n. This model can also be represented with a
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latent variable ω as follows:

yij = sign(ωij) =

{

1 if ωij > 0
0 si ωij ≤ 0

, with (2)

ωij = X ′
ijβ + φi + εij ,

where εij ∼ N (0, 1) and φi and (εij) are assumed to be mutually independent.
A commonly used parametrization for the covariance Γ is

Γii⋆ = τ2δii⋆ + σ2 exp(−ζdii⋆) (3)

where δii⋆ is the Kronecker delta which takes the value of one if i = i⋆ and zero otherwise.
It is possible to separate in (2) a set of location–specific random effects to account for unex-
plained non–spatial variation as follows: let ωi(ni×1)

= (ωi1, · · · , ωin)
′, η(n×1) = (η1, · · · , ηn)

′

and W (n×1) = (W1, · · · ,Wn)
′

(

η

W

)

∼ N2n

((

0
0

)

,

(

σ2R(ζ) 0
0 τ2I

))

(4)

where R(ζ) = (ρij) with ρij = ρij(ζ) (in (3), ρij = exp(−ζdij)).

Then, using Equation (4), in the model (2) we have b = (η′,W ′)′ and Zi = (Zi1,Zi2) with
Zik = (0 · · · 1ni

· · · 0) ∈ R
ni×n:

ω = Xβ +Zb+ ε (5)

where ω = (ω′
1, · · · ,ω

′
n)

′, X =







X1
...

Xn






, Z =







Z1
...

Zn






.

Our purpose is then to compute the maximum likelihood (ML) and the restricted maximum
likelihood (REML) estimates of the unknown parameter vectors Θ = (β,Γ(θ)) = (β, τ2, σ2, ζ).

3. Estimation procedure

To obtain both ML and REML estimates, we will use a stochastic approximation version of EM
algorithm, the SAEM algorithm proposed by Delyon et al. (1999). This stochastic version of
EM replaces the standard E–step of EM by a simulation step of the missing data under the
conditional distribution given the observations and a stochastic aproximation step. When the
simulation step cannot be directly performed, as in GLMMs, Kuhn and Lavielle (2004) propose
to combine the SAEM algorithm with a Markov Chain Monte Carlo (MCMC) procedure.

Let q = (ω, b) = (ω,η,W ) be the vector of non–observed data and y = (yij, 1 ≤ i ≤ N, 1 ≤
j ≤ ni) are the observed data. The vector of complete data is then (y, q) = (y,ω,η,W ) and
the complete data log–likelihood can be written as:

l(Θ) = log p(y,ω,η,W ;Θ) = log p(y|ω,η,W ;Θ)+ log p(ω|,η,W ;Θ)+ log p(η;Θ)+ p(W ;Θ)
(6)
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It can be noted that the first term of equation (6) can be ignored as it does not include any
information about the parameters. In fact, y is completely specified, without any uncertainty,
when ω is known. It follows that:

l(Θ) = −
1

2

n
∑

i=1

(ωi −X iβ −Z ′
ib)

2 (7)

−
n

2
log(σ2)−

1

2
log |R(ζ)| −

1

2σ2
η′R−1(ζ)η

−
n

2
log(τ2)−

1

2τ2
W ′W .

3.1 The ML–SAEM algorithm

At iteration k, the SAEM algorithm is composed by the following steps:

- ML Simulation step: we propose sampling missing values q = (ω, b), with b = (η′,W ′)′,
given the observations y and the parameters at iteration k (Θ(k)) using a Gibbs scheme.

We therefore only need to sample from the conditional distributions b
(k+1)
i |ω(k),y;Θ(k) and

ω
(k+1)
ij |b

(k+1)
i ,y;Θ(k). It can be shown using Henderson’s mixed model equations that:

b
(k+1)
i |ω(k),y;Θ(k) ∼ N

(

Vi
(k)Z ′

i(ω
(k)
i −Xiβ

(k)),Vi
(k)
)

(8)

where matrix Vi
(k) is defined as: Vi

(k) = [Z ′
iZi + Γ−1,(k)]−1 where

Γ(k) =

(

σ2(k)R(ζ(k)) 0

0 τ2
(k)
I

)

Z ′Z = (Z ′
1, · · · ,Z

′
n)







Z1
...

Zn






=

n
∑

i=1

Z ′
iZi

where

Z ′
iZi =

(

ZT
i1Zi1 ZT

i1Zi2

ZT
i2Zi1 ZT

i2Zi2

)

.

The conditional distribution for the latent variable can be defined with a truncated normal
distribution as follows:

ω
(k+1)
ij |b

(k+1)
i ,y;Θ(k) ∼ NT

(

x′
ijβ

(k) + z′
ijb

(k+1)
i , 1; 0

)

(9)

A right truncated normal distribution NT −(.) will be used if observation yij is 0 and a left
truncated normal distribution NT+(.) will be used if observation yij is equal to 1.
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- ML Stochastic step: update the following statistics:

s
(k+1)
1 = s

(k)
1 + γk+1

(

n
∑

i=1

Xi(ω
(k+1)
i −Zib

(k+1)
i )− s

(k)
1

)

s
(k+1)
2 = s

(k)
2 + γk+1

(

η(k+1) − s
(k)
2

)

s
(k+1)
3 = s

(k)
3 + γk+1

(

W (k+1)′W (k+1) − s
(k)
3

)

Parameter γk+1 is a smoothing parameter, i.e. a decreasing sequence of positive numbers, as
proposed by Kuhn and Lavielle (2004) to improve convergence in the SAEM algorithm:

γk =

{

1 for 1 ≤ k ≤ Kb

(k −Kb)
−1 for k ≥ Kb + 1.

Here, Kb + 1 is the number of iterations to perform before starting the smoothing phase of the
SAEM algorithm.

- ML Maximization step: Parameters are then updated at iteration k as follows

β(k+1) =

(

n
∑

i=1

X ′
iXi

)−1 n
∑

i=1

X ′
i

(

s
(k+1)
1

)

σ2(k+1)
=

1

n
s
(k+1)′
2 R−1(ζ(k))s

(k+1)
2

τ2
(k+1)

=
1

n
s
(k+1)
3

ζ(k+1) = argmin
ζ

{

−
1

2
log |R(ζ)| −

1

2σ2(k+1)
s
(k+1)′
2 R(ζ)−1s

(k+1)
2

}

.

3.2 The REML–SAEM algorithm

In the framework of GLMM, the approximate likelihood techniques such as the penalized quasi–
likelihood (PQL, Breslow and Clayton, 1993), are known to produce severely biased estimates
of both regression parameters and variance components, particularly when the response is bi-
nary and/or the variance components are large (Breslow and Lin, 1995; Lin and Breslow, 1996;
Neuhaus and Segal, 1997). The Restricted Maximum Likelihood (REML) estimation procedure
permits, in linear and nonlinear mixed effects models, a reduction of the bias observed with the
Maximum Likelihood (ML) estimation for variance components. Following Meza et al. (2009)
and Meza et al. (2007), we use a conditional likelihood approach to implement REML in this
kind of model. We rely on the concept of integrated likelihood to eliminate nuisance parameters
by integrating out fixed effects (Harville, 1974; Berger and Wolpert, 1999). We consider the
fixed effects as random, assuming that the prior distribution of β is noninformative. The vector
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of parameters Θ becomes Θ⋆ = (σ2, τ2, ζ), and the vector of missing data now includes β and
will be noted qREML = (ω, b,β).

To perform the simulation step of the algorithm, we use Henderson’s mixed model equations,
i.e.

[

X ′X X ′Z

Z ′X Z ′Z + Γ−1

] [

β̂

b̃

]

=

[

X ′ω

Z ′ω

]

, (10)

where β̂ is the Generalized Least Square (GLS) estimate of β and b̃ is

E(b|ω(k),β(k),y; Θ⋆(k)). Let A =

[

β̂

b̃

]

and C =

[

X ′X X ′Z

Z ′X Z ′Z + Γ−1

]−1

the inverse of the

coefficient matrix.
At iteration k of the proposed the SAEM–REML algorithm, the stochastic approximation step
as follows:

s
(k+1)
1REML

= s
(k)
1REML

+ γk+1

(

η(k+1) − s
(k)
1REML

)

s
(k+1)
2REML

= s
(k)
2REML

+ γk+1

(

W (k+1)′W (k+1) − s
(k)
2REML

)

As previously, a Gibbs scheme was used to draw the non–observed data qREML,m = (ω, b,β)
from the conditional distribution given the observations y and the parameters at iteration k
(Θ⋆(k)). In this case, it can be shown that:

1) (b
(k+1)
i ,β(k+1))|ω(k),y;Θ⋆(k) ∼ N (A,C) since y does not bring any additional information

given the underlying variable ω.

2) ω
(k+1)
ij |b

(k+1)
i ,β(k),y;Θ⋆(k) ∼ NT

(

x′
ijβ

(k) + z′
ijb

(k+1)
i , 1; 0

)

, where NT is the truncated nor-

mal distribution as previously defined.

Parameters are then updated, at iteration k, as follows

σ2(k+1)
=

1

n
s
(k+1)′
1REML

R−1(ζ(k))s
(k+1)
1REML

τ2
(k+1)

=
1

n
s
(k+1)
2REML

ζ(k+1) = argmin
ζ

{

−
1

2
log |R(ζ)| −

1

2σ2(k+1)
s
(k+1)′
1REML

R(ζ)−1s
(k+1)
1REML

}

.

As proposed by Meza et al. (2007), estimation of fixed effects can be obtained in this
SAEM-REML algorithm by their conditional expectation given the data vector and the variance-
covariance components equal to their REML estimates, i.e. β̂REML = E(β|y,θ = Θ̂

⋆
). This

estimator makes sense in an Empirical Bayes framework.

4. Simulation study

In order to investigate the performance of the proposed REML procedure, we simulate M = 200
data sets from a specific spatial model. We implement the SAEM–ML and SAEM–REML algo-
rithms presented above and apply them to the simulated data. We first simulate n = 15 spatial
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Figure 1: Simulations study: Simulated spatial locations.
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locations si = (si1, si2) with si1, si2 ∼i.i.d. Uniform(0, 1). The resulting spatial location si is
thus a random point in the unit-square that we fix for all replications.

In this study, we consider the following structure for the spatial correlation:

Γ(θ) = σ2exp(−ζd)

with σ2 = 3, ζ = 13. In the model (5), we consider that β = β0 = −1, Xij = 1 and we have
ni = m = 5 observations in each location si. Figure 4 shows the simulated spatial locations .

In this example, for both ML and REML versions of SAEM, we used 200 iterations, and
the following sequence (γk): γk = 1 for 1 ≤ k ≤ 100 and γk = 1/(k − 200) for 101 ≤ k ≤ 200.
Summary statistics for ML and REML estimates obtained for these 200 simulated data sets are
given in Table 1.

The true values of the parameters used in the simulation, the means and standard deviations
of the estimates are provided. It can be seen that the mean values for the REML estimates were
closer to the simulated values for parameters ζ and β0. In general, the ML estimates were found
to be slightly more variable than the REML estimates and the covariance matrix Γ(θ) is biased
downwards using ML. Indeed, the bias observed for parameter ζ using SAEM–ML has a huge
impact in the estimation of Γ(θ) due to the exponential correlation function used in this example.

Figure 2 give a graphical representation of these results showing the density estimates ob-
tained with ML and REML, for the parameters σ2 and ζ.
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Table 1: Simulations study: Summary statistics.

Method β⋆
0 σ2 ζ

True Value -1 3 13

Mean ML -0.840 2.906 19.912
REML -0.962 3.609 17.261

Standard dev. ML 0.501 1.649 11.292
REML 0.436 2.047 9.982

⋆: empirical conditional mean for REML

Figure 2: Simulations study: Density estimates obtained with ML and REML for σ2 and ζ.
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