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Abstract The structural similarity (SSIM) index has

been studied from different perspectives in the last decade.

Most of the developments consider its parameters fixed.

Because each of these parameters corresponds to the

weight of a factor in the final SSIM coefficient, the usual

assumption that all parameters are equal to one is ques-

tionable. In this article, a new estimation method is

proposed from a statistical perspective. The approach

we develop is a model-based estimation method so that,

the usual assumption that all parameters are equal to

one can be handled via approximate hypothesis-testing

techniques that are properly developed in the context

of regression. The method considers nonlinear mod-

els with multiplicative noise to explain the root mean

square error (RMSE) as a function of the SSIM index.
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A numerical experiment based on a Monte Carlo sim-

ulation is carried out to test whether the parameters

are all equal to one and to gain more insight into the

performance of the estimates in practice. Our analysis

showed that the assumption that the parameters are

equal to one is not supported by the data and may lead

to a misconception of the closeness between two images.

Keywords Hypothesis testing · Nonlinear models ·
Pseudo-likelihood · Structural similarity index.

1 Introduction and Preliminaries

Image quality assessment (IQA) aims to quantitatively

represent the human perception of quality. With the

rapid proliferation of digital imaging and communica-

tion technologies, IQA has been becoming an impor-

tant issue in numerous applications, such as image ac-

quisition, transmission, compression, restoration, and

enhancement. These indices are commonly designed to

study the performance of algorithms for several differ-

ent problems frequently address in image processing

such as image compression, image restoration, among

others. IQA is mainly divided into two categories: no

reference IQA that refers to automatic quality assess-

ment of an image using an algorithm such that the only

input information the algorithm receives is the distorted

image whose quality is being assessed [1]. Alternatively,

full reference algorithms require not only the distorted

image, but also the reference image. In this side of the

spectrum, several measures have been suggested in the

literature [2]. One of these coefficients is the SSIM in-

dex, which was first introduced by [3]. In this paper

we consider the SSIM for several reasons. This coeffi-

cient is naturally an attractive index because it repre-

sents human vision better than the well-known mean

https://doi.org/10.1007/s11760-021-02051-9
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square error (MSE). The conventional metrics, such as

the peak signal-to-noise ratio (PSNR) and the MSE op-

erate directly on the intensity of the image, and they

do not correlate well with the subjective fidelity ratings

[4]. Moreover, studies conducted in [5] and [6] devel-

oped mathematical properties of the SSIM which high-

light the coefficient from an optimization perspective.

Because of its simplicity, the computational cost of the

SSIM index is very low, and it involves simple factoriza-

tion of three terms. The first two terms are functions of

the sample means and variances, and the third term cor-

responds to the sample correlation coefficient between

the images, i.e., the structural part of the index com-

pares the means and variances and computes the linear

association between two images. Precisely, we let R+

denote the nonnegative real line, and we let RN+ denote

the first orthant, i.e., the set of N -dimensional vectors

with nonnegative components. An image is considered

an element x ∈ RN+ . If x,y ∈ RN+ are two images, the

SSIM index [7] is

SSIM(x,y;θ) = l(x,y)α · c(x,y)β · s(x,y)γ , (1)

where

l(x,y) =
2x · y + c1

x2 + y2 + c1
, c(x,y) =

2 sx · sy + c2
s2x + s2y + c2

,

s(x,y) =
sxy + c3
sx · sy + c3

,

x, y, s2x, s
2
y, and sxy represent the sample means of x

and y, the sample variances of x and y, and the sam-

ple covariance between x and y, respectively. The con-

stants c1, c2 and c3 are all positive. We emphasize that

l(x,y), c(x,y) and s(x,y) represent the luminance,

contrast and structure, respectively, between the im-

ages x and y, and θ = (α, β, γ)> is a parameter vector

in which each component corresponds to a weight as-

sociated with the corresponding component of (1), and

thus α > 0, β > 0, γ > 0. The constants c1, c2 and c3
characterize the saturation effects of the visual system

to guarantee stability when the denominators are close

to zero. In practice, the values of these constants are

very small (see [3] for details).

To compute the SSIM index, there are currently

routines available in several packages. For instance, a

Matlab code is available from MathWorks1, and a C++
code can be found at github2. Since the introduction of

the SSIM index, several extensions have been published

and discussed. They include the information fidelity in-

dex [8], the visual signal-to-noise ratio [9], a perceptual

quality assessment for multi-exposure image fusion [10],

1 URL: https://www.mathworks.com/matlabcentral/
answers/9217-need-ssim-m-code
2 URL: https://gist.github.com/Bibimaw/8873663

and the regression SSIM measure [11]. A generalization

of the SSIM index was studied by [12], which considers

the codispersion coefficient instead the linear correla-

tion between the two images making the coefficient to

depend on a spatial lag, in a similar way as the vari-

ogram is described in spatial statistics. [13] introduced

a new image similarity measure based on hypothesis

testing to assess structural information change by eval-

uating the dependence of local blocks of the error signal

on the images being compared.

In Equation (1), the parameters α, β, and γ are, in

general, unknown. For simplicity, in several reports in

the literature, these parameters are assumed to equal

1 (see [5] and [6]) regardless of the texture of the un-

derlying images. The estimation of these parameters is

addressed in a limited number of papers (see for in-

stance, [14] and [15]). In this article, we look at the

estimation of α, β, and γ from a statistical perspective,

i.e., using a model-based approach, and we develop a

hypothesis-testing procedure to test whether the null

hypothesis

H0 : α = β = γ = 1, against (2)

H1 : α 6= 1, or β 6= 1, or γ 6= 1,

should be rejected for a given significance value. That

is, the alternative hypothesis H1 represents the case in

which at least one coefficient is different from one. In

our approach, a regression model is considered: a non-

linear model with multiplicative error. The model is

built to express the RMSE as a function of the SSIM in-

dex. Evidence regarding the relationship between MSE

and SSIM has been provided by [16,17] and [18]. When

the noise is multiplicative, the model becomes a het-

eroscedastic nonlinear model, and the estimation of the

parameters is addressed by pseudo-likelihood maximiza-

tion in the same fashion as in [19]. To accomplish this,

an iterative estimation algorithm is explained in detail

to obtain more insight into the estimation process for

the suggested model.

Based on the proposed method for estimating the

parameters of the SSIM index, we present a simulation

experiment using three reference images with different

textures, which are contaminated with multiplicative

gamma noise (see [20]). We explore the performance

of the estimates in the existing literature and conclude

through the hypothesis-testing techniques that, in gen-

eral, the assumption that α = β = γ = 1 is not suitable

in the context of remote-sensing data. In practice, we

provide estimates based on the data (images) to deter-

mine the weights of the luminance, contrast, and cor-

relation for the final SSIM coefficient.

The remainder of this paper is organized as follows.

Section 2 considers that the parameters α, β and γ are

https://www.mathworks.com/matlabcentral/answers/9217-need-ssim-m-code
https://www.mathworks.com/matlabcentral/answers/9217-need-ssim-m-code
https://gist.github.com/Bibimaw/8873663
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not fixed, and details a regression model approach to es-

timating the SSIM index and the estimation algorithm

in the framework of nonlinear models with multiplica-

tive noise. Then, in Section 3, we present a simulation

study using three reference images to demonstrate that

the assumption that all parameters equal 1 is not always

appropriate and to report that the proposed method-

ology provides reasonable estimates. Finally, Section 4

summarizes this paper.

2 Methodology

This section establishes a nonlinear regression model to

relate the SSIM and RMSE coefficients, and develops

an estimation algorithm to implement in practice the

hypothesis testing problem described in (2). We also

approach the derivation of the score function associ-

ated with the statistical test, and the strategy to build

routines in C, material that has been relegated to Ap-

pendix B in the supplementary material.

Throughout this article, we assume that the response

variable is

Z = 1/RMSE(x,y).

The estimation of functions such as the one described

in Equation (1) is common in economic contexts, where

they are called production functions [21]. In this type

of model, it is possible to incorporate random noise in

an additive or a multiplicative way as follows:

Z = l(x,y)α · c(x,y)β · s(x,y)γ + u, (3)

Z = l(x,y)α · c(x,y)β · s(x,y)γ · eu, (4)

where u is a normal random variable with distribution

N(0, σ2). For the additive model described in (3), the

estimation of the parameters can be carried out using

the well-known nonlinear least-squares estimator [22].

Because this work is dedicated to remote sensing images

for which the assumption of a multiplicative noise is

frequent [20] (see also [23]), the rest of the methodology

is described for model (4).

We note that the mean and variance functions for

model (4) are, respectively, given by

E(Z) = l(x,y)α · c(x,y)β · s(x,y)γeσ
2/2

var(Z) = [l(x,y)α · c(x,y)β · s(x,y)γ · eσ
2/2]2(eσ

2

− 1),

which correspond to a heteroscedastic nonlinear regres-

sion model such as the one treated by [19] (see also

[24]). To clarify some ideas, suppose that the images

x,y are divided into n subimages of size k×k. That is,

there are n available observations, and we define

fi(θ) = SSIM(xi,yi;θ), for i = 1, . . . , n.

Then, we estimate ψ = (θ>, φ)> using the model

Zi ∼ N(φfi(θ), f2i (θ)g2(φ)), i = 1, . . . , n, (5)

where g2(φ) = φ2(φ2 − 1) with φ = eσ
2/2.

To facilitate the estimation of the scale parameter φ,

the pseudo-likelihood associated with the model defined

in (5) can be used based on an initial estimate for θ.

Thus, an estimator based on the pseudo-likelihood φ̂PL
maximizes the function

`PL(φ) = −1

2

n∑
i=1

[
r2i (θ̂∗, φ)

f2i (θ̂∗)g2(φ)
+ log f2i (θ̂∗)g

2(φ)

]
, (6)

where ri(θ, φ) = Zi−φfi(θ) and θ̂∗ is the current esti-

mate of the regression parameter θ. The function `PL(φ)

can be maximized by a one-dimensional optimization

procedure such as the method described in [25]. This

method needs to be alternated with a substage in which

θ̂ is updated as the solution of an unconstrained mini-

mization problem. Algorithm 1 describes the stages nec-

essary to obtain ψ̂ = (θ̂>, φ̂)>. To gain more insight

into the convergence depicted in Step 6, we recommend

following the suggestions given in Chapter 14 of [22].

Algorithm 1 Estimation of the SSIM index using

pseudo-likelihood

Input: Images x, y ∈ RN
+ , tolerance (τ), maximum number

of iterations (maxiter), window size k.

Output: Estimated parameters: θ̂ = (α̂, β̂, γ̂)> and φ̂.

#Preprocessing stage
1: Subdivide images x, y into n windows of size k × k, ob-

taining the dataset (x1, y1), . . . , (xn, yn).
2: Compute l(xi, yi), c(xi, yi), s(xi, yi) and the response
Zi = 1/RMSE(xi, yi) for i = 1, . . . , n.

#Estimation stage

3: Using a preliminary estimator θ̂∗, compute fi(θ̂∗) and

ri(θ̂∗, φ), for i = 1, . . . , n.

4: Update φ̂PL by maximizing `PL(φ) in relation to φ by using
a one-dimensional optimization procedure.

5: Update θ̂ using the following iterative procedure:

θ(t+1) = θ(t) + λtδt, t = 0, 1, . . . , (7)

where λt denotes the step length and δt is the search
direction obtained using a quasi-Newton method [26].
Equation (9) provides the gradient information that is
required for computing the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) update (for φ = φ̂PL held fixed). Upon

completion of the inner cycle defined in (7), we set θ̂.
6: Check the convergence of the algorithm. If it has been

reached, let ψ̂ = (θ̂>, φ̂)> be the parameter estimate

with φ̂ = φ̂PL. Otherwise, set θ̂∗ = θ̂, and return to step
3.

The asymptotic distribution of the estimator ob-

tained from the pseudo-likelihood method under very
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general conditions with regard to the moments has been

derived in [19]. Moreover, the asymptotic covariance

matrix in this framework does not have a simple ex-

pression. However, based on the distributional assump-

tion given in (5) and assuming suitable regularity con-

ditions (see, for instance [27]), it follows that
√
n(ψ̂−ψ)

has an asymptotic normal distribution with mean zero

and covariance matrix F−1n (ψ). The Fisher informa-

tion matrix for the model given in (5) is deferred to

the supplementary material. In this study, we avoid

calculating the second-order information terms by con-

sidering an asymptotically equivalent test statistic pro-

posed by [28]. Noting that the null hypothesis of interest

H0 : α = β = γ = 1 can be written in a more compact

way as H0 : θ = 1, it follows that the gradient statistic

is

T = U>(1)(θ̂ − 1), (8)

where the score function U(θ) = ∂`(ψ)/∂θ based on

model (5), is given by:

U(θ) =
φ

g2(φ)
F>(θ)W−1(θ)(Z − φf(θ))

− 1

2
H>(θ)V −1(θ) vec

(
W (θ)− r(θ)r>(θ)

g2(φ)

)
,

(9)

withH(θ) = (vec(∂W (θ)/∂θ1), . . . , vec(∂W (θ)/∂θp)),

p is the the dimension of θ, vec(·) denotes the vector-

ization operator, V (θ) = W (θ) ⊗W (θ) and ⊗ indi-

cates the Kronecker product. For the gradient statistic,

U(1) = U(θ)
∣∣
θ=1

corresponds to the score function

given in (9) evaluated under H0. Finally, the decision

rule in the gradient test establishes that the null hy-
pothesis is rejected if T > χ2

1−α(3), where χ2
1−α(3) is

the lower quantile of order 100(1−α)% of the chi-square

distribution with 3 degrees of freedom.

The estimation procedure and the hypothesis-testing

method described in this section have been implemented

in R and C, and the codes are available on github.3 The

computational strategy adopted in our C routines to

evaluate the score function for the heteroscedastic re-

gression model defined in (5) is described in the sup-

plementary material.

3 Numerical Experiments

In this section, we evaluate the performance of the pro-

posed methodology through a simulation study and the

analysis of synthetic aperture radar (SAR) imagery pro-

vided publicly by ICEYE.4 Statistical estimation and

3 URL: https://github.com/faosorios/SSIM
4 URL: https://www.iceye.com/downloads/datasets

hypothesis testing about the parameters α, β, and γ

will bring worth information leading us to consider non

constant values for these parameters.

3.1 Monte Carlo simulation study

3.1.1 Simulation setup

The images texmos2.S512, Lena, and Baboon used in this

study (see Figure 1) belong to the USC-SIPI image

database.5 All images used in this work have been nor-

malized and converted to a grayscale using the R pack-

age SpatialPack [29]. The advantages of these images

is that they present a variety of different textures. We

have contaminated each reference image x as

y = x ·w,

where w denotes a multilook intensity speckle noise.

Motivated by [20], we will assume that each element

of w follows a Gamma(L,L) distribution, with L also

known as the equivalent (or effective) number of looks,

which is related to the capture and processing of syn-

thetic aperture radar (SAR) images. The multilook in-

tends to mitigate the effect of interference due to the

speckle noise. The higher the number of looks the lower

the level of interference or contamination. In our ex-

periment each reference images (Figure 1) were con-

taminated with multiplicative noise using a Gamma

distribution, with different decreasing levels of contam-

ination, that is, 1, 2, 4, 8, 16, and 32 looks. For each

look, 1,000 images were constructed. Moreover, Lee, en-

hanced Lee, and Kuan filters were used to remove the

multiplicative noise for each of the distorted images.

A brief description of these filters is presented in Ap-
pendix D of the supplementary material. For all filters

we have considered pixel window of size 3×3. Next, the

parameter estimates of model (4) were obtained using

the Algorithm 1, also we computed the gradient statis-

tic to test the hypothesis H0 : α = β = γ = 1 and

evaluated the SSIM under H0 and H1.

3.1.2 Simulation results

Table 1 shows the average of the estimates of θ =

(α, β, γ)> for the multiplicative model described in Equa-

tion (4). Results for Lena and Baboon reference images

are deferred to the supplementary material for this ar-

ticle. The results are based on 1,000 simulation runs

and θ(0) = (1, 1, 1)> was used as the initial estimate

for SSIM estimation considering each distorted as well

as each filtered image. The estimates allow us to ques-

tion the assumption that α = β = γ = 1. The results

5 URL: http://sipi.usc.edu/database

https://github.com/faosorios/SSIM
https://www.iceye.com/downloads/datasets
http://sipi.usc.edu/database
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(a) texmos2.S512 (b) Lena (c) Baboon

Fig. 1 Reference images from the USC-SIPI image database.

(a) Copeland (b) Dam

(c) Corpus Christi (d) Mississippi

Fig. 2 Images (a), (c), and (d) were obtained from the ICEYE SAR satellite constellation. Image (b) was taken from the
school of mines database at Universidad Nacional de San Juan, Argentina.

depend on the type of image considered in the experi-

ments, as well as on the filter used. In particular, for the

texmos2.S512 the estimations of the parameters are equal

or closed to 1 only when when no filter is used, and the

number of looks is equal to 1 or 2. It is also observed

that the performance of the filters is very similar, there

being a high concordance between Kuan and Enhanced

Lee filters. When the number of looks is greater than

2, the parameter estimates start varying from 1. The

results looks slightly different for textured images, such

as Lena and Baboon. Beyond these results, the major ar-

gument against the hypothesis H0 : α = β = γ = 1

is the percentage of rejection of the null hypothesis for

most the cases in the simulations carried out (see Table

2 and Tables 3, 4 of the supplementary material). These

results are in agreement with the studies performed by

[15], where the authors provide some evidence support-

ing that, in general, H0 is not true.

In addition, Table 3 report average values of the

SSIM index (1) evaluated at θ = 1 and θ = θ̂, or equiv-

alently, under H0 and H1. The constants contained in

the SSIM index have been chosen using the guidelines

given in [3]. We note that every time that H0 is re-

jected, the SSIM under H0 yields an overestimation of
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Table 1 Averages of parameter estimates for the SSIM index
for Texmos2.S512 image. The results were obtained from 1,000
Monte Carlo simulations.

Number No filter Lee filter

of looks α̂ β̂ γ̂ α̂ β̂ γ̂

1 1.000 1.000 1.000 1.178 1.233 1.166
2 1.000 1.000 1.000 1.247 1.326 1.241
4 1.037 1.051 1.037 1.308 1.400 1.304
8 1.082 1.113 1.082 1.431 1.540 1.429
16 1.160 1.214 1.160 1.613 1.748 1.612
32 1.297 1.386 1.297 1.825 1.958 1.824

Number Enhanced Lee filter Kuan filter

of looks α̂ β̂ γ̂ α̂ β̂ γ̂

1 1.295 1.375 1.278 1.254 1.132 1.102
2 1.473 1.598 1.460 1.496 1.409 1.317
4 1.573 1.712 1.566 1.503 1.611 1.488
8 1.763 1.920 1.759 1.746 1.913 1.743
16 1.946 2.122 1.942 1.906 2.066 1.905
32 2.122 2.330 2.120 2.190 2.355 2.191

Table 2 Rejection percentages of H0 : α = β = γ = 1 for
Texmos2.S512 image. The results were obtained from 1,000
Monte Carlo simulations.

Number Filter

of looks None Lee Enhanced Lee Kuan

1 0.0 100.0 100.0 100.0
2 100.0 100.0 100.0 100.0
4 100.0 100.0 100.0 100.0
8 100.0 100.0 100.0 100.0
16 100.0 100.0 100.0 100.0
32 100.0 100.0 100.0 100.0

Table 3 Averages of the SSIM index estimates for Tex-
mos2.S512 image. The results were obtained from 1,000
Monte Carlo simulations.

Number No filter Lee filter

of looks Under H0 Under H1 Under H0 Under H1

1 0.551 0.551 0.758 0.722
2 0.690 0.690 0.857 0.824
4 0.802 0.796 0.917 0.893
8 0.882 0.873 0.953 0.934
16 0.933 0.923 0.974 0.958
32 0.963 0.953 0.986 0.974

Number Enhanced Lee filter Kuan filter

of looks Under H0 Under H1 Under H0 Under H1

1 0.772 0.715 0.795 0.771
2 0.883 0.830 0.888 0.851
4 0.940 0.907 0.940 0.911
8 0.969 0.945 0.968 0.945
16 0.984 0.968 0.983 0.968
32 0.991 0.981 0.991 0.980

the similarity between the images (see Table 3 and Ta-

bles 5 and 6 from the supplementary material), which

can lead to a wrong impression of its closeness.

Figures 1 to 12 in the supplementary material dis-

play the empirical distribution function (CDF) of the

SSIM coefficient under H0 and H1 for the images tex-

mos2.S512, Lena and Baboon, considering several filters.

For each reference image there is a big separation be-

tween the CDFs when H0 is rejected. Indeed, the differ-

ence between these distributions has been tested using

the Kolmogorov-Smirnov test, leading in each case to

a significant difference at a level 0.05. Moreover, the

distribution of H0 has been placed in the right side of

each graph indicating that the association between the

reference and simulated images is larger than the ac-

tual value. From the processing of these images we also

highlight the agreement between the SSIM coefficients

when the Kuan and Enhanced Lee filters are used. The

findings summarized here are not only valid for the im-

ages displayed in Figure 1. We carried out the same

analysis for other images taken from the same database

and the data analysis (not shown here) corroborates the

findings discussed in this section.

To test the hypothesis H0 : α = β = γ = 1, we

used the gradient test defined by (8). The rejection of

H0 was highly significant, despite the fact that in cer-

tain cases the similarity index is high. This provides

evidence against the use of the SSIM index with the

assumption α = β = γ = 1.

3.2 Application using SAR imagery

The SAR imagery used in this study correspond to the

Copeland, Kansas; Corpus Christi, Texas and the Mis-

sissippi River Delta in the state of Louisiana, USA and

an image taken from Ullúm’s dam in Argentina (see

Figure 2). These images are characterized by presenting

different landscapes from the structural point of view

(for example hilly regions and inland valleys) along the

coast and river valleys, agricultural lands and urban

areas. This diversity of landscapes provides the ideal

scenario to evaluate the methodology introduced in Sec-

tion 2.

Figures 2 (a), (c) and (d) were obtained by the IC-

EYE SAR satellite constellation from 2019 to Octo-

ber 2020. Datasets are available in single look com-

plex processing level with a ground range resolution

of 3m. Figure 2 (b) is a Landsat image taken from the

image database at Universidad Nacional de San Juan

(UNSJ). This dataset was used in [30] for addressing the

spatial association among several processes. In a pre-

processing stage each image was converted to grayscale

and rescaled it to the interval [0, 1]. In order to reduce
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Table 4 Parameter estimates and SSIM index under H0 and H1 for SAR reference images.

Copeland Corpus Christi

Filter Estimates SSIM Estimates SSIM

α̂ β̂ γ̂ Under H0 Under H1 α̂ β̂ γ̂ Under H0 Under H1

Lee 1.891 1.932 3.136 0.680 0.326 1.610 1.639 2.705 0.828 0.614
Enhanced Lee 1.691 1.722 2.987 0.652 0.306 1.600 1.626 2.512 0.818 0.615
Kuan 1.691 1.722 2.987 0.652 0.306 1.600 1.626 2.512 0.818 0.615

Dam Mississippi

Filter Estimates SSIM Estimates SSIM

α̂ β̂ γ̂ Under H0 Under H1 α̂ β̂ γ̂ Under H0 Under H1

Lee 1.000 1.000 1.000 0.999 0.999 1.591 1.623 2.670 0.890 0.740
Enhanced Lee 1.000 1.000 1.000 0.999 0.999 1.468 1.491 2.553 0.884 0.737
Kuan 1.000 1.000 1.000 0.999 0.999 1.468 1.491 2.553 0.884 0.737

the speckle noise, all the images were filtered using Lee,

enhanced Lee and Kuan multiplicative filters with a

moving window of size 3× 3.

Results reported in Table 4 allow us to question the

working assumption that α = β = γ = 1. Indeed, for

the SAR images Copeland, Corpus Christi and Mississippi
the null hypothesis H0 : α = β = γ = 1 is rejected. It

should be stressed that the rejection is highly signif-

icant for each of the filters used. Additionally, in all

cases where H0 is rejected, the SSIM evaluated at the

estimators for α, β and γ is lower than their counter-

parts when we assume the working assumption. This

may give a misleading idea about their degree of sim-

ilarity. Finally, these results allow us to confirm our

previous findings reported in the simulation study.

4 Concluding Remarks and Discussion

This paper has presented a novel method for estimat-

ing the SSIM index based on a nonlinear statistical

model. To the best of our knowledge this is the first

attempt to present parameter estimates of α, β and γ

from a statistical perspective. A hypothesis-testing ap-

proach has been developed and efficiently implemented

to test whether the parameters of the SSIM index are

all equal to one. The methodology is accompanied by

suitable routines developed in R and C that maintain

a low computational complexity. The Monte Carlo ex-

periment provided evidence that is in agreement with

the results of other approaches found in the literature,

and highlighted both, the use of the estimated SSIM

in practice, and the overestimation of the SSIM that

can occur when all parameters are assumed to be equal

to one. Our findings detailed in the Monte Carlo sim-

ulation study are confirmed using real SAR images. In

summary, we suggest to practitioners use the weighted

version of the SSIM in which the parameters of the in-

dex are estimated via Algorithm 1, instead of assuming

that α = β = γ = 1. Indeed, the traditional assump-

tion may lead to misjudge the similarity between two

images.

Further exploration with remote-sensing data is needed

to characterize the range of the estimates. This is one

way to explore how the variable parameters can be char-

acterized for a set group of images with similar charac-

teristics. A study in this respect could be implemented

following the guidelines given in [20].

Several related problems arise from the methodol-

ogy suggested in this article. For instance, the definition

of a similarity index based on the SSIM index for a mul-

tiplicative model of the form Z = X ·Y , whereX models

the terrain backscatter and Y models the speckle noise

[20], and improvement of the estimation procedure fol-

lowing the guidelines of the algorithm proposed by [31]

appear to be challenging problems to be addressed in

future research.

Another relevant problem is the estimation of the

SSIM in those situations where an additive model is

appropriate. In such a case, a way to relate the SSIM

and the MSE that we plan to study is through the use

of a likelihood-based approach. Defining

Zi = log(MSE(xi,yi)),

ui = [log(l(xi,yi)), log(c(xi,yi)), log(s(xi,yi))]
>,

and θ = (α, β, γ)>. Then, the model of interest is

Zi = u>i θ + εi, i = 1, . . . , n. (10)

Let us assume that Di represents the mismeasured re-

sponse and let f(z|ui,ω) and f(di|z) denote the den-

sities of Zi and Di|Zi = z, respectively, where ω =
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(β>, σ2)>. Then, Di has a marginal density given by

f(di|xi,ω) =

∫
f(di|z)f(z|xi,ω) d z. (11)

Consequently, the likelihood function of w is

L(ω) =

n∏
i=1

f(di|xi,ω). (12)

The MLE of ω can be obtained using the EM algorithm.

Full details regarding the computational aspects asso-

ciated with the maximum likelihood estimation under

normal models with constant variance and asymptotic

results for the MLE estimates in a calibration context

can be found in [32]. The SSIM estimation using the

likelihood (12) from a general nonlinear modeling per-

spective with error in the response appear to be a chal-

lenging problem to address in further research.
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(Córdoba), CONICET.

References

1. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference im-
age quality assessment in the spatial domain. IEEE T. Im-
age Process. 21, 4695-4708 (2012).

2. Wang, K., Yong, B., Gu, X., Xiao, P., Zhang, X.: Spectral
similarity measure using frequency spectrum for hyperspec-
tral image classification. IEEE Geosci. Remote S. 12, 130-
134 (2015).

3. Wang, Z., Bovik, A.C.: A universal image quality index.
IEEE Signal Proc. Let. 9, 81-84 (2002).

4. Zhang, L., Zhang, L., Mou, X., ZHang, D.: FSIM: A Fea-
ture Similarity Index for Image Quality Assessment. IEEE
Transactions on Image Processing 20, 2378-2386 (2011).

5. Brunet, D., Vrscay, E.R., Wang, Z.: On the mathematical
properties of the structural similarity index IEEE T. Image
Process. 21, 1488-1499 (2012).

6. Vallejos, R., Mancilla, D., Acosta, J.: Image similarity
assessment based on coefficients of spatial association. J.
Math. Imaging Vis. 56, 77-98 (2016).

7. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Im-
age quality assessment: From error visibility to structural
similarity. IEEE T. Image Process. 13, 600-612 (2004).

8. Sheikh, H.R., Bovik, C.: Image information and visual
quality. IEEE T. Image Process. 15, 430-444 (2006).

9. Chandler, D.M., Hemami, S.S.: VSNR: A wevelet-based
visual sinal-to-noise-ratio for natural images. IEEE T. Im-
age Process. 16, 2284-2298 (2007).

10. Ma, K, Zeng, K., Wang, Z.: Perceptual quality assessment
for multi-exposure image fusion. IEEE T. Image Process.
24, 3345-3356 (2015).

11. Wang, Y.K., Li, L., Zhou, X.Y., Cui, T.J.: Supervised
automatic detection of UWB ground-penetrating radar tar-
gets using the regression SSIM measure. IEEE Geosci. Re-
mote S. 13, 621-625 (2016).

12. Ojeda, S., Vallejos, R., Lamberti, P.: Measure of similar-
ity between images based on the codispersion coefficient.
Journal Electron. Imaging 21, 023019 (2012).

13. Wang, H., Maldonado, D., Silwal, S.: A nonparametric-
test-based structural similarity measure for digital images.
Comput. Stat. Data An. 55, 2925-2936 (2011).

14. Rehuman, A., Wang, Z.: Reduced-reference SSIM esti-
mation. Proceedings of 2010 IEEE 17th International Con-
ference on Image Processing. Hong Kong, 26-29 (2010).

15. Wang, Z., Li, L., Wu, S., Xia, Y., Wan, Z., Cai, C.: A
new image quality assessment algorithm based on SSIM and
multiple regressions. Int. J. Sig. Process. 8, 221-230 (2015).

16. Dosselmann, R., Yang, X.D.: A comprehensive assess-
ment of the structural similarity index. SIViP 5, 81–91
(2011).

17. Yeo, C., Tan, H.L., Tan, Y.H.: On rate distortion opti-
mization using SSIM. IEEE T. Circ. Syst. Vid. 23, 1170-
1181 (2013).

18. Kim, S., Pak, D., Lee, S.: SSIM-based distortion metric
for film grain noise in HEVC. SIViP 12, 489-496 (2018).

19. Davidian, M. Carroll, R.J.: Variance function estimation.
J. Am. Stat. Assoc. 82, 1079-1091 (1987).

20. Frery, A.C., Müller, H.J., Yanasse, C.C.F., Sant’Anna,
S.J.S.: A model for extremely heterogeneous clutter. IEEE
T. Geoscie. Remote 35, 648-659 (1997).

21. Goldfeld, S.M., Quandt, R.E.: Nonlinear Methods in
Econometrics. North-Holland Publishing Company, Ams-
terdam (1972).

22. Seber,G.A.F., Wild, C.J.: Nonlinear Regression. Wiley,
New York (1988).

23. Cribari-Neto, F., Frery, A.C., Silva, M.F.: Improved esti-
mation of clutter properties in speckled imagery. Comput.
Stat. Data An. 40, 801-824 (2002).

24. Carroll, R.J., Ruppert, D.: Transformation and Weight-
ing in Regression. Chapman and Hall, New York (1988).

25. Brent, R.P.: Algorithms for Minimization without
Derivatives. Dover, New York (1973).

26. Nash, J.C.: Compact Numerical Methods for Computers.
Linear Algebra and Function Minimization. Adam Hilger,
Bristol (1990).

27. Gorieroux, C., Monfort, A.: Statistics and Econometrics
Models: General concepts, estimation, prediction, and algo-
rtihms. Cambridge University Press, Cambridge (1995).

28. Terrell, G.R.: The gradient statistic. Comp. Sci. Stat. 34,
206-215 (2002).

29. Osorio, F., Vallejos, R.: SpatialPack: Tools for assess-
ment the association between two spatial processes. R pack-
age version 0.3-8196. URL: CRAN.R-project.org/package=
SpatialPack (2020).

30. Vallejos, R., Osorio, F., Bevilacqua, M. Spatial Relation-
ships Between Two Georeferenced Variables: With Appli-
cations in R. Springer, Cham (2020).

31. Loader, C., Pilla, R.S.: Iteratively reweighted general-
ized least squares for estimation and testing with corre-
lated data: An inference function framework. J. Computat.
Graph. Stat. 16, 925-945 (2007).

32. Buonaccorsi, J.P.: Measurement error in the response in
the general linear model. J. Am. Stat. Assoc. 91, 633-642
(1996).

CRAN.R-project.org/package=SpatialPack
CRAN.R-project.org/package=SpatialPack

	Introduction and Preliminaries
	Methodology
	Numerical Experiments
	Concluding Remarks and Discussion

