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Abstract

The main aim of this paper is to propose a set of tools for assess-
ing non-normality taking into consideration the class of multivariate
t-distributions. Assuming second moment existence, we consider a repa-
rameterized version of the usual t distribution, so that the scale matrix
coincides with covariance matrix of the distribution. We use the local
influence procedure and the Kullback-Liebler divergence measure to pro-
pose quantitative methods to evaluate deviations from the normality
assumption. In addition, the possible non-normality due to the pres-
ence of both skewness and heavy tails is also explored. Our findings
based on two real datasets are complemented by a simulation study to
evaluate the performance of the proposed methodology on finite samples.
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1 Introduction

The need to analyze multivariate continuous observations arises frequently in
several areas of knowledge. In particular, most statistical inferences associated
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with estimation and hypothesis testing in this context are based on the assump-
tion of normality (see, for instance, Anderson, 2003; Härdle and Simar, 2012,
among others). Although most of these developments are due to the simplic-
ity and usefulness of the normal distribution, it is well known that statistical
inference based on this distribution is susceptible to the presence of atypical
data. The fourth-order moments of the normal distribution are determined
by the first and second moments of the distribution, making it impossible to
adjust the kurtosis of the observations. Specifically, it is necessary to consider
alternative distributions that allow us to circumvent this limitation of the mul-
tivariate normal distribution. In this direction, several authors have suggested
the use distributions belonging to the elliptically contoured class. For example,
in Fang and Zhang (1990) and Gupta et al. (2013) the definition, proper-
ties and statistical inference for multivariate elliptical models are described
in detail, with particular emphasis on dependent elliptical models. Whereas
in this paper, we concentrate on the independent multivariate t model, which
would provide a robust estimation procedure against possible outliers in data
(see, for instance Lange et al., 1989). Moreover, the t distribution incorporates
an additional parameter that enables the modeling of data with high kurtosis.

The study of non-normality using entropy-based measures is rather lim-
ited, with Gómez-Villegas et al. (2011) being a notable exception. This work
proposes a set of tools for the detection of non-normality based on the mul-
tivariate t distribution. The local influence procedure and Kullback-Liebler
divergence are used as measures to evaluate deviations from normality asso-
ciated with a sample of observations from a continuous population following
a multivariate t distribution. Specifically, we consider a reparameterization of
the t distribution with a finite second moment. This enables a more direct com-
parison with the normal distribution (see Sutradhar, 1993 and Bolfarine and
Galea, 1996). In addition, a very simple graphical procedure to evaluate the
model assumptions is proposed taking advantage of the distribution associated
with the Mahalanobis distances under the multivariate t-distribution. This
provides a methodology to quantify the impact of non-normality on the statis-
tical modeling by providing a robust approach based on a reparametrization
of the multivariate t-distribution. Although the paper focuses on measures of
non-normality due to kurtosis, we also include some measures of non-normality
due to possible skewness present in the observations.

The paper unfolds as follows. In Section 2, we present the multivariate
t distribution which is based on the work by Fiorentini et al. (2003), who
used a reparameterization of the degrees of freedom, as suggested by Lange
et al. (1989). An explicit expression for the Fisher information matrix is pre-
sented. Two procedures for assessing non-normality using measures based on
the Kullback-Liebler divergence and the local influence approach are described
in detail in Section 3, whereas Section 4 a quantile-quantile (QQ) plot of
transformed Mahalanobis distances is proposed. Section 5 is dedicated to illus-
trating the methodology used in the paper considering two real datasets from
environmental and biological areas, and we report the results of a simulation
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study to evaluate the performance of the proposed methodology on finite sam-
ples. Finally, Section 6 draws conclusions and discusses perspectives for future
work. Some details of the results presented throughout the paper are described
in the Appendices.

2 The multivariate t distribution

We say that a p-dimensional random vector X = (X1, . . . , Xp)
> has a mul-

tivariate t distribution, with a µ mean vector, covariance matrix Σ, and
0 ≤ η < 1/2 shape parameter, if its pdf is given by

f(x; µ,Σ) = Kp(η)|Σ|−1/2
(
1 + c(η)δ2

)− 1
2η (1+ηp), x ∈ Rp, (1)

where

Kp(η) =
(c(η)

π

)p/2 Γ( 1
2η (1 + ηp))

Γ( 1
2η )

, (2)

in which c(η) = η/(1− 2η) and δ2 = (x−µ)>Σ−1(x−µ) is the Mahalanobis
distance. Besides, we asume that Σ is positive definite throughout the paper. If
a random vector has a density function (1), we shall denote X ∼ Tp(µ,Σ, η).
The multivariate t distribution parameterization given in (1) is introduced
mainly because µ and Σ correspond to the mean vector and covariance matrix,
respectively. On the other hand, η is the inverse of the degrees of freedom,
namely, the shape parameter, which allows the kurtosis of the distribution to
be adjusted. Using this mean and variance parameterization, Sutradhar (1993)
proposed a C(α) test for testing of the covariance matrix Σ = Σ0, and Bol-
farine and Galea (1996) used this parameterization in comparative calibration.
The parameterization of the degrees of freedom used in this work was originally
suggested by Lange et al. (1989), who stated that “. . . and inferences about ν,
the degrees of freedom parameter, itself might be improved by transforming
to 1/ν or log(ν)”. Later, Fiorentini et al. (2003) and more recently Galea et
al. (2020), used density (1) to model financial data. Note that this parame-
terization enables a direct comparison between the maximum likelihood (ML)
estimators of the mean vector and covariance matrix and the obtained versions
under the normal model, which would in turn simplify the interpretation of
those parameter estimates. Some properties of the multivariate t distribution
given in (1) are deferred to the Supplementary Material.

2.1 Score function and Fisher information

Consider x1, . . . ,xn as a random sample from a multivariate t distribution
given by (1). In this case, the log-likelihood function for θ = (µ>,φ>, η)> with
φ = vech(Σ) indicating different elements in the matrix Σ (see for instance,
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Magnus and Neudecker, 1999) takes the form

L(θ) =

n∑
i=1

Li(θ), (3)

where the ith component of the log-likelihood function is given by

Li(θ) = logKp(η)− 1

2
log|Σ| − 1

2η
(1 + ηp) log

(
1 + c(η)δ2i

)
,

with Kp(η) defined in Equation (2) and δ2i = (xi − µ)>Σ−1(xi − µ) for i =
1, . . . , n. From (3), we can see that the ML estimator for θ does not have an
explicit form, and thus, iterative procedures must be used. The EM algorithm
for the parameterization defined in this work is reviewed in the Supplementary
Material.

We have that the score function takes the form U(θ) =
∑n

i=1U i(θ),
where an individual score can be written in a partitioned form as U i(θ) =
(U>i (µ),U>i (φ), Ui(η))>, with

U i(µ) = viΣ
−1(xi − µ), (4)

U i(φ) =
1

2
D>p vec(viΣ

−1(xi − µ)(xi − µ)>Σ−1 −Σ−1), (5)

Ui(η) =
1

2η2

{
ψ
( 1

2η

)
− ψ

(1 + pη

2η

)
+ c(η)(p− viδ2i ) + log qi

}
, (6)

where vi = (1/η + p)/(1/c(η) + δ2i ) = (1 + pη)q−1i /(1 − 2η) corresponds to a
weight function that is a decreasing function of the distance δ2i , (Kent et al.,
1994; Kent and Tyler, 1991; Maronna, 1976), qi = 1 + c(η)δ2i , for i = 1, . . . , n,

ψ(z) = d log Γ(z)/ dz is the digamma function, andDp ∈ Rp2×p(p+1)/2 denotes
the duplication matrix of order p, (Magnus and Neudecker, 1999).

Therefore, the Fisher matrix information for θ based on the log-likelihood
defined in (3) assumes the form (see Appendix A)

I(θ) =

Iµµ(θ) 0 0
0 Iφφ(θ) Iφη(θ)

0 I>φη(θ) Iηη(θ)

 , (7)

where

Iµµ(θ) = cµ(η)Σ−1,

Iφφ(θ) =
1

4
D>p

{
2cφ(η)(Σ−1 ⊗Σ−1)Np + (cφ(η)− 1)(vec Σ−1)(vec Σ−1)>}Dp,

Iφη(θ) = − c(η)(p+ 2)

(1 + pη)(1 + (p+ 2)η)
D>p vec Σ−1,
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Iηη(θ) =
1

4η4

{
ψ′
( 1

2η

)
− ψ′

(1 + pη

2η

)
+ 2pc(η)2

( 4(p+ 2)η2 − pη − 1

(1 + pη)(1 + (p+ 2)η)

)}
,

in which Np = 1
2 (Ip2 + Kp), and Kp is the commutation matrix of order

p2 × p2, (Magnus and Neudecker, 1999), cµ(η) = cφ(η)/(1 − 2η), cφ(η) =
(1 + pη)/(1 + (p + 2)η) and ψ′(z) = dψ(z)/ dz is the trigamma function
(Abramowitz and Stegun, 1970, p. 260). Note that cµ(η) and cφ(η)→ 1 when
η → 0. In addition, we have that NpDp = Dp, thus recovering the expressions
corresponding to the normal case. Also, as η → 0, we have that c(η)→ 0 and
as shown in Appendix A, Iηη(θ)→ p(p+ 2)(2p+ 5)/2. Consequently,

I(θ)→ block diag
(
Σ−1, 1

2D
>
p (Σ−1 ⊗Σ−1)Dp,

1
2p(p+ 2)(2p+ 5)

)
,

as η → 0. Therefore, the Fisher information matrix is no singular in the neigh-
borhood of normality, which allows to maintain the usual asymptotic behavior
of the ML estimator.

3 Measuring non-normality

In multivariate analysis it is usual to specify a parametric working model,
for the sake of simplicity we consider the class of continuous and elliptically
symmetric distributions, with mean vector µ, covariance matrix Σ and shape
parameter η;

Cg = {f(x; µ,Σ) : µ ∈ Rp and Σ ∈ S+},
generated by g, where f(x; µ,Σ) = Kg(η)|Σ|−1/2g(δ2), g is a known real-
valued function having a strictly negative derivative, Kg(η) is a normalizing
constant, δ2 = (x−µ)>Σ−1(x−µ) represents the Mahalanobis distance and
S+ is the class of symmetric and positive-definite matrices of dimension p× p.
The multivariate normal and t distributions, considered in this paper, belong
to Cg. In this section we use some statistical tools to evaluate non-normality in
the class Cg, with emphasis on the multivariate t distribution. Specifically, we
use divergence measures to describe the discrepancy between the normal and
t distributions. Additionally, we use the local influence methodology to assess
the sensitivity of the ML estimator to small perturbations of the normality,
using the multivariate t distribution, which is called t-perturbation.

3.1 The Kullback-Leibler divergence

Let Z ∈ Rp be a random vector with probability density function (pdf) fZ(z).
The Shannon (1948) entropy, is given by

H(Z) = −E[log fZ(z)] = −
∫
Rp
{log fZ(z)}fZ(z) dz.
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A direct calculation (see Lemma 3 in Supplementary Material), shows that for
the normal and t distributions the Shannon entropy has explicit form and are
given in the following lemma,

Lemma 1 If X ∼ Np(µ,Σ) and Y ∼ Tp(µ,Σ, η), then their Shannon entropies are
given by

(i) H(X) = 1
2 log|Σ|+ p

2 (1 + log 2π).

(ii) H(Y ) = − logKp(η) + 1
2 |Σ|+

1
2η (1 + ηp)

{
ψ
(

1+ηp
2η

)
− ψ

(
1
2η

)}
.

Suppose now that X,Y ∈ Rp are two random vectors with pdf’s fX(x)
and fY (y), respectively, which are assumed to have the same support. Related
to the entropy concept we can also find divergence measures between the dis-
tributions of X and Y . The most well-known of these measures is the so called
Kullback-Leibler (KL) divergence proposed by Kullback (1951) as

dKL(fX , fY ) =

∫
Rp
fX(x) log

{fX(x)

fY (x)

}
dx = EX

[
log
{fX(X)

fY (X)

}]
,

which measures the divergence of fY from fX and where the expectation is
defined with respect to the pdf fX(x) of the random vector X. Although the
KL divergence measures the distance between two densities, it is not a distance
measure. The KL from fX to fY is generally not the same as the KL from fY to
fX . This is a quasi-metric. Indeed, which is relevant from the statistical point
of view is that, dKL(fX , fY ) ≥ 0 and dKL(fX , fY ) = 0 if and only if fX = fY .

A concept related to the entropy is the Negentropy. In statistics the negative
entropy or negentropy is used to quantify the non-normality of a random vector
and measures the difference in entropy between a given distribution and the
normal distribution, both with the same vector mean and covariance matrix.
The Negentropy is always nonnegative and vanishes if and only if the random
vector has a normal distribution. Negentropy of a random vector Y with mean
µ and covariance matrix Σ, is defined as (Contreras-Reyes and Arellano-Valle,
2012; Gao and Zhang, 2010),

HN (Y ) = H(X)−H(Y ),

where X ∼ Np(µ,Σ). The following lemma summarizes these results for
normal and t distributions.

Lemma 2 If X ∼ Np(µ,Σ) and Y ∼ Tp(µ,Σ, η), then

(i) dKL(fN , fT ) = − logKp(η)− p
2 (1+log 2π)+ 1

2η (1+pη) EN{log(1+c(η)δ2)},

(ii) dKL(fT , fN ) = p
2 (1+log 2π)+ logKp(η)− 1

2η (1+ηp)
{
ψ
(

1+ηp
2η

)
−ψ

(
1
2η

)}
,

(iv) HN (Y ) = p
2 (1 + log 2π) + logKp(η)− 1

2η (1 + ηp)
{
ψ
(

1+ηp
2η

)
− ψ

(
1
2η

)}
,
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where EN{log(1 + c(η)δ2)} = E{log(1 + Y )}, with Y ∼ Gamma
(
p
2 ,

1
2c(η)

)
.

Note that in this case dKL(fT , fN ) = HN (Y ). Using a Taylor series expan-
sion to the second order it is possible to show that, dKL(fN , fT ) ≈ Iηη(θ)η2/2,
for 0 ≤ η < 1/2, with Iηη(θ) being the Fisher information matrix for η given
in (7).

Using the properties of the ML estimator and the delta method (Serfling,
2009) we have the following result on the asymptotic distribution of η̂ and of
the negentropy, HN (Y ).

Lemma 3 The asymptotic distribution of η̂ and h(η̂) = HN (Y )
∣∣
η=η̂

is respectively,

given by

√
n(η̂ − η)

D−→ N(0, σ2η),

√
n(h(η̂)− h(η))

D−→ N(0, [h′(η)]2σ2η),

with σ2η = (Iηη(θ)− I>φη(θ)I−1φφ (θ)Iφη(θ))−1, and

h′(η) =
1

2η2

{
pc(η) +

1 + pη

2η

(
ψ′
(1 + pη

2η

)
− ψ′

( 1

2η

))}
.

3.2 Local influence approach

The method of local influence was introduced by Cook (1986) as a general tool
for assessing the influence of local departures from the assumptions underlying
the statistical model. A perturbation scheme is introduced into the postulated
model (working model) through a perturbation vector, and an influence mea-
sure is constructed using the basic geometric idea of curvature of the likelihood
displacement surface. In our case, we assume that the working model corre-
sponds to the multivariate normal distribution and we perturbed normality
using the multivariate t distribution, generating a distribution with heavier
tails than normal. In fact, the density of the postulated model for a sample of
size n is given by

fN (X; µ,Σ) =

n∏
i=1

(2π)−p/2|Σ|−1/2 exp(−δ2i /2),

where δ2i = (xi − µ)>Σ−1(xi − µ), i = 1, . . . , n and X = (x1,x2, . . . ,xn)> ∈
Rn×p. Let η = (η1, . . . , ηn)> be a perturbation vector varying in Λ ⊆ Rn and
M = {fT (X; µ,Σ,η) : η ∈ Λ}, the perturbed model, where

fT (X; µ,Σ,η) =

n∏
i=1

Kp(ηi)|Σ|−1/2
(
1 + c(ηi)δ

2
i

)− 1
2ηi

(1+ηip)
(8)
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The corresponding perturbed log-likelihood function is given by

L(θ|η) =

n∑
i=1

Li(θ|ηi), (9)

where

Li(θ|ηi) = logKp(ηi)−
1

2
log|Σ| − 1

2ηi
(1 + ηip) log

(
1 + c(ηi)δ

2
i

)
,

with Kp(η) defined in Equation (2). The influence of the t-perturbation η on
the ML estimator can be evaluated by the likelihood displacement given by
LD(η) = 2[L(θ̂) − L(θ̂η)], where L(θ), denotes the log-likelihood function of

the postulated model, θ̂ is the ML estimator of θ in the normal model and
θ̂η is the ML estimator of θ in under the multivariate t distribution, that is
the perturbed model M. Cook (1986) proposes to study the local behavior of
LD(η) around η0 and shows that the normal curvature Cl of LD(η) at η0

in direction of some unit vector l, is given by Cl = Cl(θ) = 2|l>∆>L̈
−1

∆l|,
with ‖l‖ = 1, where L̈ = ∂2LN (θ)/∂θ∂θ> and ∆ = ∂2L(θ|η)/∂θ∂η> are

evaluated at θ = θ̂ and η = η0, where η0 is the vector of null perturbation.
Let lmax be the direction of greatest curvature associated with the matrix

F = ∆>L̈
−1

∆. Thus, the index plot of |lmax| can reveal if the t-perturbation
has influence on LD(η), in the neighborhood of the normal model (η0), Cook
(1986). We may also consider the index plot of Ci = 2|fii| to evaluate the
presence of “influential observations”, where fii is the ith element of the diag-
onal of the matrix F . In view that Cl is not invariant under uniform changes
of scale, Poon and Poon (1999) proposed the conformal normal curvature
Bl = Cl/ tr(2F ) (see Zhu and Lee, 2001). An interesting property of confor-
mal curvature is that for any unitary direction l, it follows that 0 ≤ Bl ≤ 1.
We denote by Bi = 2|fii|/ tr(2F ) the conformal curvature in the unitary
direction with ith entry 1 and all other entries 0. According to Zhu and Lee
(2001), the ith observation is potentially influential if Bi > B̄+2 sd(B), where
B̄ =

∑n
i=1Bi/n and sd(B) is the standard deviation of B1, . . . , Bn.

We have that the score function takes the form U(θ|η) =
∑n

i=1U iη(θ),
where an individual score can be written in a partitioned form as U iη(θ) =

(U>iη(µ),U>iη(φ))>, with

U iη(µ) = viΣ
−1(xi − µ),

U iη(φ) =
1

2
D>p vec

(
viΣ

−1(xi − µ)(xi − µ)>Σ−1 −Σ−1
)
,

where vi = (1/ηi + p)/(1/c(ηi) + δ2i ) = (1 + pηi)/(1 − 2ηi + ηiδ
2
i ) for i =

1, . . . , n corresponds to a weight function that is a decreasing function of the
distance δ2i , for i = 1, . . . , n. Taking derivatives of (9) with respect to ηi and
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evaluating at η0 = 0 and θ = θ̂, we can write ∆ = (∆1,∆2, . . . ,∆n), with
∆i = (∆>iµ,∆

>
iφ)>, where

∆iµ = (p+ 2− δ̂2i )Σ̂
−1

(xi − x),

∆iφ = 1
2 (p+ 2− δ̂2i )D>p vec

(
Σ̂−1(xi − x)(xi − x)>Σ̂−1

)
,

with δ̂2i = (xi − x)>Σ̂−1(xi − x), i = 1, . . . , n, x = (1/n)
∑n

i=1 xi and Σ̂ =
(1/n)

∑n
i=1(xi − x)(xi − x)>. It is well known that the sample covariance

matrix, Σ̂ is positive definite with probability 1 provided that p ≤ n − 1. If
ηi = η for i = 1, . . . , n, and considering a Taylor expansion of order two of
L(θ̂η) around η = η0 it follows that

LD1(η) ≈∆>(−L̈)−1∆(η − η0)2, 0 ≤ η < 1/2,

where

∆ =

n∑
i=1

(
∆iµ

∆iφ

)
.

The observed information matrix for θ = (µ>,φ>)> evaluated at θ = θ̂ is
the p(p+ 3)/2× p(p+ 3)/2 matrix,

−L̈ = n

(
Σ̂−1 0

0 1
2D
>
p

(
Σ̂−1 ⊗ Σ̂−1

)
Dp

)

To verify if the t-perturbation (see Equation (8)), is an appropriate pertur-
bation scheme, we can use the methodology proposed by Zhu et al. (2007). Let
G(η) = Eη(UηU

>
η ), where Uη denoted the score vector under the perturbed

log-likelihood function (9). The ith element of the score function is given by

Uη(ηi) =
1

2η2i

{
ψ
( 1

2ηi

)
− ψ

(1 + pηi
2ηi

)
+ c(ηi)(p− viδ2i ) + log(1 + c(ηiδ

2
i )
}
,

where vi = (1/ηi + p)/(1/c(ηi) + δ2i ), for i = 1, . . . , n. In our case we have
G(η) = diag(g11(η1), . . . , gnn(ηn)), with

gii(ηi) = − 1

2η2i

{ p

(1− 2ηi)2

( 1 + pηi(1− 4ηi)− 8η2i
(1 + ηip)(1 + (p+ 2)ηi)

)
+

1

2η2i

(
ψ′
(1 + pηi

2ηi

)
− ψ′

( 1

2ηi

))}
,

for i = 1, . . . , n. The perturbation η is appropriate if it satisfies G(η0) = cIn,
with c > 0. In our case, c = p(p + 2)(2p + 5)/2, and the t-perturbation is
an appropriate perturbation scheme. The evaluation of the G(η) matrix at
η = η0 should be understood as limη→0+ G(η).
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4 Goodness of fit

Any statistical analysis should include a critical analysis of the model assump-
tions. Next, we describe a simple graphical device for model checking, using
the Mahalanobis distance. We have that, the random variables

Fi =
( 1

1− 2η

)δ2i
p

iid∼ F (p, 1/η)

for i = 1, . . . , n. Substituting the ML estimators yields F̂i = Fi(θ̂), which
has asymptotically the same F distribution as Fi, i = 1, . . . , n. Using the
Wilson-Hilferty (1931) approximation,

zi =

(
1− 2η

9

)
F̂

1/3
i −

(
1− 2

9p

)
√

2η
9 F̂

2/3
i + 2

9p

, i = 1, . . . , n,

which approximately follows a standard normal distribution. Thus, a QQ-
plot of the transformed distances {z1, . . . , zn} can be used to evaluate the fit
of the multivariate t-distribution. For η = 0, the transformed distances are

simplified to zi = {F̂ 1/3
i − (1 − 2/(9p))}/

√
2/(9p), and can be used to assess

of fit of the multivariate normal distribution. Additionally, the Mahalanobis
distance can be used for multivariate outlier detection. In addition, larger
than expected values of the modified Mahalanobis distance, F̂i, i = 1, . . . , n,
identify outlying cases (see Lange et al., 1989). It should be stressed that
these graphical diagnostics can reveal model inadequacy. The technique will
be illustrated in Section 5.

5 Numerical experiments

In this section, we study the performance of the proposed methodology by
considering three real data sets. In addition, we present a simulation study
to evaluate the performance of non-normality detection procedure using the
influence diagnostics. The non-normality measures, local influence and good-
ness of fit for the multivariate t-distribution described in previous sections has
been implemented in R, and the codes are available on the github webpage
https://github.com/faosorios/nonnormality.

5.1 Monte Carlo study

We reported our findings from a Monte Carlo simulation study, which was
designed to evaluate the performance of the local influence procedure described
in the previous section on small samples. 1,000 datasets with sample size of
n = 50, 200 and 1,000 were created from a normal distribution, Np(µ,Σ) for
p = 2, 5, 20, 50 and 100. Based on the simulation study reported by Leal et al.

https://github.com/faosorios/nonnormality
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(2019), we considered

µ = 0, Σ = (1− 0.95)Ip + 0.95 1p1
>
p .

It is well known that a single outlying observation can strongly affect the
assumption of normality. To introduce an outlier, for each dataset, a single
observation of the second variable X12 was changed to X12 + δ, where δ =
0.5, 1.5, 2.0, 2.5, 3.0 and 3.5. Let l = |lmax|, thus we detect the synthetic outlier
if l1 is greater than the following threshold l+2 sd(l), where l and sd(l) are the
average and standard deviation of l, respectively. Table 1 contains the outlier
detection percentages computed using this threshold for different values of δ.

Table 1 Outlier detection percentage using the t-perturbation to detect non-normality

p n δ

0.5 1.0 1.5 2.0 2.5 3.0 3.5

2 50 16.9 65.4 96.0 99.9 100.0 100.0 100.0
200 12.7 61.5 96.2 99.9 100.0 100.0 100.0

1000 13.8 64.7 95.0 100.0 100.0 100.0 100.0

5 50 15.0 67.9 98.6 100.0 100.0 100.0 100.0
200 10.3 68.8 98.5 100.0 100.0 100.0 100.0

1000 9.4 61.9 98.9 100.0 100.0 100.0 100.0

20 50 6.5 27.9 74.0 96.0 99.7 100.0 100.0
200 4.4 38.2 90.0 99.8 100.0 100.0 100.0

1000 2.2 34.5 90.9 99.9 100.0 100.0 100.0

50 200 1.2 13.2 57.7 95.5 100.0 100.0 100.0
1000 0.6 11.1 66.1 98.1 99.9 100.0 100.0

100 200 0.9 4.9 22.3 58.7 89.2 99.6 100.0
1000 0.3 4.3 33.4 83.6 99.6 100.0 100.0

As expected, the outlier detection percentages improve as δ increases. It
should be noted that inasmuch as p increases, the percentage of detected out-
liers decreases. In Table 1, we have excluded cases n = 50 and p = 50, 100,
because in this situation the sample covariance matrix is not invertible.
Our findings suggest that t-perturbation is quite efficient in detecting non-
normality caused by outliers. It should be highlighted that our results are
consistent with the outcomes of the Monte Carlo experiment developed by
Leal et al. (2019).

5.2 Real-life examples

5.2.1 Wind speed data

The wind speed dataset consists of n = 278 hourly average wind speed in
the Pacific North-West of the United States collected at three meteorological
towers approximately located on a line and ordered from west to east: Goodnoe
Hills (gh), Kennewick (kw), and Vansycle (vs). The data were collected from
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25 February to 30 November 2003 recorded at midnight, a time when wind
speeds tend to peak. More information about the data can be found in Azzalini
and Genton (2008) (see also, Arellano-Valle et al., 2018).

Following Arellano-Valle et al. (2018), let X(t) the three-dimensional vec-
tor of wind speed at the towers (gh, kw and vs) recorded at time t = 1, . . . , 278.
Azzalini and Genton (2008) applied a Ljung-Box test to the data that indi-
cated some serial correlation at the Goodnoe Hills tower, but not at the other
two towers. Given this result, the authors propose to treat the observations
as being independent and identically distributed. A descriptive statistics sum-
mary is presented in Table 2. Although the data present moderate levels of
negative skewness, in this paper we find that the multivariate symmetric t-
distribution presents a good fit, substantially better than the adjust of the
normal distribution.

Table 2 Descriptive statistics for the Wind speed dataset.

Variable Mean vector Sample covariance matrix Skewness Kurtosis

vs 16.980 185.307 -0.849 4.376
gh 12.741 126.959 177.779 -0.692 2.617
kw 14.032 148.180 110.620 297.167 -0.410 3.009

Mardia’s skewness: 3.516, and kurtosis: 23.850

Table 3 Gaussian fit: Wind speed dataset.

Variable Mean vector Covariance matrix

vs 16.980 184.641
gh 12.741 126.502 177.140
kw 14.032 147.647 110.222 296.098

log-likelihood: -3254.534

Table 4 Multivariate t fit: Wind speed dataset.

Variable Mean vector Covariance matrix

vs 18.959 217.241
gh 14.831 175.155 246.069
kw 16.725 200.799 152.030 353.586

log-likelihood: -3211.186, η̂ = 0.237

Tables 3 and 4 show the ML estimators under the normal and t distri-
butions, respectively. The maximum value of the log-likelihood function is
also reported. We can see that under the t-distribution the ML estimators of
the mean wind speeds and their standard deviations are slightly larger than
under the normal distribution. To note the improvement obtained when using
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a multivariate t-distribution, we considered the following hypothesis test:

H0 : η = 0, against H1 : η > 0. (10)

The likelihood-ratio statistic is LR = 86.696. We should highlight that the
asymptotic distribution of the LR test for the previous hypothesis corresponds
to a 50:50 mixture of chi-squares with zero and one degree of freedom whose
critical value at significance level of 5% is 2.7055 (see, for instance Song et al.,
2007). This indicates that the assumed normality is not supported by the data.
Alternatively, the assumption of normality can also be evaluated by either
using Mardia’s test (1974) or by considering the score statistic developed by
Fiorentini et al. (2003). Figures 1 and 2 show the QQ-plots and Mahalanobis
distances for the two distributions. Some possible outliers are observed, and
also it is observed a better adjustment of the multivariate t distribution. This
conclusion is also confirmed by the confidence intervals displayed in Table
5, and by the bootstrap distributions of the ML estimators of η and of the
negentropy h(η̂) = HN (Y ) (see Figure 3). These distributions were generated
by using 1000 bootstrap samples, and the solid line corresponds to the normal
approximation presented in Lemma 3.
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Fig. 1 Wind speed dataset: (a) Mahalanobis distances and (b) QQ-plot of transformed
distances, fitted model under the normality assumption.

Table 5 Asymptotic and Bootstrap confidence intervals, for η and h(η). Wind speed
dataset (n = 278, η̂ = 0.237, h(η̂) = 0.279)

Method CIn(η) CIn(h(η))

normal approximation 0.162 0.311 0.054 0.504
bootstrap percentile 0.159 0.305 0.111 0.540
bootstrap pivotal 0.168 0.314 0.018 0.447
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Fig. 2 Wind speed dataset: (a) Mahalanobis distances and (b) QQ-plot of transformed
distances, fitted model under the multivariate t distribution.

The Figure 4 shows index plots for local influence measures for t-
perturbation scheme. Observations 16, 42, 47 and 233 stand out as potentially
influential on the assumption of normality. Note that these same observa-
tions are also highlighted by the Mahalanobis distances (see Figures 1 and 2).
In Table 6, we summarize the results of the fit of the t-distribution without
considering these observations.

An interesting comment raised by one of the referees was that the non-
normality may also come from the asymmetry present in the data. An
alternative to address this scenario is to consider the skew-t distribution (see,
for instance Azzalini and Genton, 2008; Gupta et al., 2003). Details on the
development of tools for assessing non-normality based on entropy measures
are presented in Appendix B. Moreover, the results of Section 4 can be used
directly for the construction of QQ-plots with envelopes in order to evaluate
the goodness of fit for skew-normal and skew-t models.

Tables 7 and 8 present the fit using the skew-normal and skew-t models
defined by the densities presented in Equations (B1) and (B2), respectively.
The results reported in Table 9 allow us to refute the assumption of normality,
although it should be noted that for this dataset the non-normality is not only
due to the asymmetry, but also to the presence of extreme wind speeds. Indeed,
the QQ-plot displayed in Figure 5 (a) reveals that the skew-normal model is
not an appropriate alternative for modeling this type of data. As mentioned
by Azzalini and Genton (2008), the skew-t distribution offers an improvement
over the Gaussian model, although compared to the multivariate t-distribution
the improvement seems marginal. Indeed, QQ-plots in Figures 2 (b) and 5 (b)
are remarkably similar. Apparently, the use of the multivariate t-distribution
yields some protection against small levels of skewness. We believe this is a
feature of the model that merits further investigation.
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Table 6 Multivariate t fit with observations 16, 42, 47 and 233 removed: Wind speed
dataset.

Variable Mean vector Covariance matrix

vs 18.833 188.656
gh 14.620 154.921 217.412
kw 16.613 176.538 132.304 310.028

log-likelihood: -3135.325, η̂ = 0.189
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Fig. 3 Wind speed dataset: Bootstrap distributions for (a) η̂ and (b) h(η̂).
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Fig. 4 Wind speed dataset: Indices plot for the t-perturbation, (a) |lmax| and (b) Bi.

Table 7 Skew normal fit: Wind speed dataset.

Variable Location vector Dispersion matrix skewness

vs 25.792 262.290 1.073
gh 28.200 262.731 416.142 -4.974
kw 23.112 227.661 250.600 378.548 -0.282

log-likelihood: -3229.176
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Table 8 Skew-t fit: Wind speed dataset.

Variable Location vector Dispersion matrix skewness

vs 27.486 175.507 0.633
gh 27.828 188.034 276.320 -4.548
kw 24.326 161.141 166.362 236.538 -0.124

log-likelihood: -3180.724, ν̂ = 4.047

Table 9 Bootstrap confidence intervals, for hSN = HN (X), hSt = HN (Y ) and ν. Wind

speed dataset (n = 278, ĥSN = 0.246, ĥSt = 0.439, ν̂ = 4.047)

Bootstrap method CIn(hSN) CIn(hSt) CIn(ν)

percentile 0.160 0.311 0.318 0.535 3.245 5.863
pivotal 0.181 0.331 0.343 0.559 2.230 4.848
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Fig. 5 Wind speed dataset: QQ-plot of transformed distances, for (a) skew-normal and (b)
skew-t fits.

5.2.2 Transient sleep disorder

Svetnik et al. (2007) introduced a dataset of 82 patients who received a sleep-
inducing drug. As part of a clinical study related to insomnia problems we
sought to measure the latency to persistent sleep (LPS), i.e. which was recorded
from the time the lights were turned off until 10 consecutive minutes of unin-
terrupted sleep. Originally, six measurement methods were used to study the
sleep pattern. In this paper, we consider two of these methods: fully man-
ual scoring and automated scoring by the Morpheus software (Manual and
Automated, respectively).

This dataset has been previously analyzed by Feng et al. (2015) who consid-
ered a robust approach for the concordance between the manual and automated
methods within a Bayesian framework, whereas Leal et al. (2019) developed
methods to study the influence that outlying observations can exert on the con-
cordance correlation coefficient and the probability of agreement. Both papers
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identify that observations 1, 30 and 79 are outliers. Indeed, these observa-
tions have a great impact on the estimation of the covariance matrix as well
as on the concordance correlation coefficient. We can notice this aspect from
the information displayed in Tables 11 and 12. In particular, the likelihood
ratio statistic for the hypothesis given in Equation (10) is LR = 70.217. Thus,
the normality assumption is rejected (see also QQ-plot presented in Figure
6 (b)). We should emphasize that the distribution for η̂ obtained by bootstrap
is quite skewed and concentrated at high values. The empirical distribution
for negentropy confirms non-normality for this dataset. Additional informa-
tion is provided by the QQ-plot of transformed distances as well as from the
influence plot considering the t-perturbation. Specifically, observations 30 and
79 are those that allow invalidating the normality assumption. These findings
complement the results reported by Leal et al. (2019). We must highlight the
great improvement on the fit produced by using the multivariate t-distribution
(see, for instante, the QQ-plot displayed in Figure 7 (b)).

In addition, the estimation was performed using the skew-normal and skew-
t models described in Appendix B. The estimation results are presented in
Tables 14 and 15. It should be noted that the QQ-plot of transformed dis-
tances assuming skew-normal distribution (Figure 10 (a)) reveals the presence
of heavy tails and that this feature has a strong impact on the estimation of
the skewness parameter. This may be due to the fact that in the skewness coef-
ficient proposed by Mardia (1970), there is a high interaction between ν and
γ for small values of the degrees of freedom (see, for instance, Figure B1). It
should also be noted that the estimation of ν̂ = 1.749 for the skew-t distribu-
tion, the covariance matrix does not exist, which prevents a direct comparison
with the normal model or the model considering the t-distribution with the
parameterization used in this work. Moreover, it is interesting to note that the
negentropy is much more pronounced for the t-multivariate distribution than
for its asymmetric counterpart.

Table 10 Descriptive statistics for the transient sleep disorder dataset.

Variable Mean vector Sample covariance matrix Skewness Kurtosis

manual 2.554 0.771 -0.230 2.569
automated 2.309 0.703 1.252 0.120 3.756

Mardia’s skewness: 1.006, and kurtosis: 18.292

Table 11 Gaussian fit: transient sleep disorder dataset.

Variable Mean vector Covariance matrix

manual 2.554 0.762
automated 2.309 0.694 1.237

log-likelihood: -200.890
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Table 12 Multivariate t fit: transient sleep disorder dataset.

Variable Mean vector Covariance matrix

manual 2.615 4.826
automated 2.530 4.750 5.218

log-likelihood: -165.782, η̂ = 0.453

Table 13 Asymptotic and Bootstrap confidence intervals, for η and h(η). Transient sleep
disorder dataset (n = 82, η̂ = 0.453, h(η̂) = 1.454)

Method CIn(η) CIn(h(η))

normal approximation 0.367 0.538 0.159 2.749
bootstrap percentile 0.320 0.490 0.382 2.936
bootstrap pivotal 0.416 0.586 -0.028 2.526
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Fig. 6 Transient sleep disorder dataset: (a) Mahalanobis distances and (b) QQ-plot of
transformed distances, fitted model under the normality assumption.
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Fig. 7 Transient sleep disorder dataset: (a) Mahalanobis distances and (b) QQ-plot of
transformed distances, fitted model under the multivariate t distribution.
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Fig. 8 Transient sleep disorder dataset: Bootstrap distributions for (a) η̂ and (b) h(η̂).

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

hm
ax

79

30

(a)

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

di
ag

(B
) 30

79

(b)

Fig. 9 Transient sleep disorder dataset: Indices plot for the t-perturbation, (a) |lmax| and
(b) Bi.

Table 14 Skew normal fit: transient sleep disorder dataset.

Variable Location vector Dispersion matrix skewness

manual 2.247 0.856 -0.110
automated 1.697 0.882 1.612 0.846

log-likelihood: -200.782

Table 15 Skew-t fit: transient sleep disorder dataset.

Variable Location vector Dispersion matrix skewness

manual 2.822 0.465 8.437
automated 2.930 0.485 0.584 -10.424

log-likelihood: -151.476, ν̂ = 1.749
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Table 16 Bootstrap confidence intervals, for hSN = HN (X), hSt = HN (Y ) and ν.

Transient sleep disorder dataset (n = 82, ĥSN = 0.065, ĥSt = 0.599, ν̂ = 1.749)

Bootstrap method CIn(hSN) CIn(hSt) CIn(ν)

percentile 0.023 0.508 0.335 0.850 1.182 4.601
pivotal -0.379 0.106 0.348 0.864 -1.103 2.316
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Fig. 10 Transient sleep disorder dataset: QQ-plot of transformed distances, for (a) skew-
normal and (b) skew-t fits.

6 Discussion

In this work, we have discussed the problem of statistical inference on the mean
vector and the covariance matrix when there is a sample of observations from
a continuous population following a multivariate t distribution. Specifically, we
assumed the existence of the second moment, and we have used a reparame-
terized version of the multivariate t distribution proposed by Sutradhar (1993)
that allows for a more direct comparison with the normal distribution. Mea-
sures to determine non-normality were proposed using different procedures.
Namely, measures based on the Kullback-Liebler divergence, the local influence
procedure and a graphical tool to assess goodness-of-fit. We must highlight the
good performance of each of these procedures in our numerical experiments.

A point that is often raised, for instance, associated with data from finan-
cial contexts is the use of distributions suitable for modelling skewness and
heavy tails. To deal with this pitfalls and based on the suggestion of a referee,
we have considered the class of skew-t distributions (Azzalini and Genton,
2008; Gupta et al., 2003). Appendix B presents the negentropy for skew-normal
and skew-t distributions, as well as a brief comment on the skewness coeffi-
cient proposed by Mardia (1970) for both distributions. Among the procedures
for the detection of non-normality outlined in this work, the use of the local
influence technique is very relevant, which also reveals those observations that
exert a strong influence on deviations from normality. The extension of these
results represents an interesting field that the authors plan to address in future
research.
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Another interesting aspect that one of the referees pointed out to us corre-
sponds to the ill-conditioning that can occur due to the covariance structure. It
is illustrative to note that, for the equicorrelation matrix Σ = (1−ρ)I+ρ1p1

>
p ,

used in the simulation study reported in Section 5.1, we have that its condition
number κ(Σ), takes the form

κ(Σ) =
√
λ1/λp =

√
1 + pρ/(1− ρ),

where λ1 and λp are the largest and smallest eigenvalue of Σ, respectively. It is
easy to notice that κ(Σ) is an increasing function in p. Thus, we should expect
ill-conditioning problems in situations whose dimension is large. An alternative
to overcome this may be to consider the work of Ledoit and Wolf (2004),
Bodnar et al. (2014) or more recently Ledoit and Wolf (2020). Moreover, it is
well known that under normality, i.e., for η = 0, the condition for the sample
covariance matrix to be positive definite is guaranteed when n − 1 ≥ p (see
Dykstra, 1970). However, for η ∈ (0, 1/2] the positive definiteness of the ML
estimator for Σ described in the Supplementary Material depends not only
on n and p, but also on the weights obtained by the estimation algorithm,
v̂i = (1/η̂ + p)/(1/c(η̂ + δ̂2i )) for i = 1, . . . , n. Details about this topic and the
distribution of the estimated weights under the t-multivariate distribution is
being developed by the authors and will be the subject of an incoming paper.

Supplementary information. This material is subdivided into two
sections. First, we present basic properties of the multivariate t-distribution
introduced by Sutradhar (1993). Then, a detailed description of the maximum
likelihood estimation procedure considering an EM algorithm is provided.
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Appendix A The expected information matrix

We use the results shown in the Supplementary Material and note that the
Fisher information matrix for θ can be written as

I(θ) =
1

n

n∑
i=1

E{U i(θ)U>i (θ)},
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where the score function U i(θ) = (U>i (µ),U>i (φ), Ui(η))> associated to the
ith component of the log-likelihood, with i = 1, . . . , n, is defined in Equations
(4)-(6), and the expected value E(·) is taken with respect to the density func-
tion in (1). Next, we obtain each of the blocks of the Fisher information matrix
reported in Equation (7).

From the score functions (4) and (5), it follows that

E{U i(µ)U>i (µ)} = cµ(η)Σ−1,

E{U i(φ)U>i (φ)} =
1

4
D>p

{
2cφ(η)(Σ−1 ⊗Σ−1)Np

+ (cφ(η)− 1)(vec Σ−1)(vec Σ−1)>
}
Dp,

where cµ(η) = cφ(η)/(1− 2η), cφ(η) = (1 + pη)/(1 + (p+ 2)η). Note that cµ(η)
and cφ(η)→ 1 when η → 0. On the other hand, we have thatNpDp = Dp (see
Magnus and Neudecker, 1999), which produces the expressions corresponding
to the normal case.

Therefore, it is clear that

∂vi
∂η

= (1− 2η)−3
{

(p+ 2)(1− 2η)q−1i − (1 + ηp)q−2i δ2i

}
,

with qi = 1 + c(η)δ2i . Thus, we obtain

∂U i(µ)

∂η
= (1− 2η)−3Σ−1

{
(p+ 2)(1− 2η)q−1i Zi − (1 + ηp)q−2i δ2iZi

}
,

∂U i(φ)

∂η
=

1

2
(1− 2η)−3D>p vec

{
Σ−1

(
(p+ 2)(1− 2η)q−1i ZiZ

>
i

− (1 + ηp)q−2i δ2iZiZ
>
i

)
Σ−1

}
.

By applying Lemmas 3 and 5 from Supplementary Material, it follows that

E
{∂U i(µ)

∂η

}
= 0,

E
{∂U i(φ)

∂η

}
=

c(η)(p+ 2)

(1 + ηp)(1 + (p+ 2)η)
D>p vec(Σ−1),

for i = 1, . . . , n. The score function for η can be written as,

Ui(η) =
1

2η2

{
pc(η) + ψ

( 1

2η

)
− ψ

(1 + pη

2η

)
− 1 + pη

1− 2η

c(η)δ2i
1 + c(η)δ2i

+ log(1 + c(η)δ2i )
}
,

=
1

2η2

{
log(1 +Qiη)−

(
ψ
(1 + pη

2η

)
− ψ

( 1

2η

))
−
(1 + pη

1− 2η

Qiη
1 +Qiη

− pc(η)
)}
,
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where Qiη = c(η)δ2i ∼ χ2
p/χ

2
1/η, E{Qiη(1 + Qiη)−1} = pη

1+pη and E{log(1 +

Qiη)} = ψ
(

1+pη
2η

)
− ψ

(
1
2η

)
. Let U1 = log(1 + Qiη), U2 = 1+pη

1−2η
Qiη

1+Qiη
, U1 =

U1 − E(U1) and U2 = U2 − E(U2). Then,

E{Ui(η)} = E{(U1 − E(U1))− (U2 − E(U2))} = 0,

var{Ui(η)} =
1

4η4
{E(U

2

1)− 2 E(U1U2) + E(U
2

2)}

=
1

4η4
{var(U1)− 2 Cov(U1, U2) + var(Ū2)}

=
1

4η4
{E(U2

1 )− E2(U1)− 2(E(U1U2)− E(U1) E(U2)) + E(U2
2 )− E2(U2)}.

Using the fact that ψ(x+ 1) = ψ(x) + 1/x we have

E(U2
1 ) = E{(log(1 +Qiη))2} = E2(U1)− ψ′

(1 + pη

2η

)
+ ψ′

( 1

2η

)
,

E{U1U2) =
1 + pη

1− 2η
E{Qiη(1 +Qiη)−1 log(1 +Qiη)}

=
{

E(U1) +
2η

1 + pη

}
E(U2),

E(U2
2 ) =

(1 + pη

1− 2η

)2
E{Q2

iη(1 +Qiη)−2}

=
p+ 2

p

1 + pη

1 + (p+ 2)η
E(U2)2.

Finally, we have that the expected information in relation to η is given by,

var{Ui(η)} =
1

4η4

{
− ψ′

(1 + pη

2η

)
+ ψ′

( 1

2η

)
− 4η

1 + pη
E(U2)

+
p+ 2

p

1 + pη

1 + (p+ 2)η
E(U2)2 − E(U2)2

}
=

1

4η4

{
ψ′
( 1

2η

)
− ψ′

(1 + pη

2η

)
+ 2pc(η)2

( 4(p+ 2)η2 − pη − 1

(1 + pη)(1 + (p+ 2)η)

)}
.

From the expansion (Abramowitz and Stegun, 1970, Sec. 6.4.12),

ψ′(x) =
1

x
+

1

2x2
+

1

6x3
+O

( 1

x5

)
as x→∞,

(1 + ax)−k = 1− kax+
k(k + 1)

2
a2x2 − k(k + 1)(k + 2)

6
a3x3 +O(x4) as x→ 0,
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we find as η → 0 that,

ψ′
( 1

2η

)
− ψ′

(1 + pη

2η

)
= 2η + 2η2 +

4

3
η3 − 2η(1 + pη)−1 − 2η2(1 + pη)−2

− 4

3
η3(1 + pη)−3 +O(η5)

= 2pη2 − (2p2 − 4p)η3 + (2p3 − 6p2 + 4p)η4 +O(η5).

Similarly,

2pc(η)2
( 4(p+ 2)η2 − pη − 1

(1 + pη)(1 + (p+ 2)η)

)
=

2pη2(4(p+ 2)η2 − pη − 1)

(1− 2η)2(1 + pη)(1 + (p+ 2)η)

= (8p(p+ 2)η4 − 2p2η3 − 2pη2)(1 + 4η + 12η2 +O(η3))

× (1− pη + p2η2 +O(η3))(1− (p+ 2)η − (p+ 2)2η2O(η3))

= −2pη2 + (2p2 − 4p)η3 + (2p3 + 24p2 + 16p)η4 +O(η5).

Hence,

var{Ui(η)} =
1

4
(4p3 + 18p2 + 20p) +O(η) =

p(p+ 2)(2p+ 5)

2
+O(η).

Appendix B Non-normality due to asymmetry

Another source of non-normality is the possible asymmetry present in the
observations. Shannon entropy, Kullback-Leibler divergence and mutual infor-
mation for multivariate skew-elliptical distributions have been considered in
the literature, see for instance Arellano-Valle et al. (2012) and Contreras-
Reyes and Arellano-Valle (2012). We summarize some of these results for the
multivariate skew normal and skew t distributions below.

Following Arellano-Valle et al. (2012) we say that a random vector Z ∈ Rp
has a skew-normal distribution with location vector ξ ∈ Rp, dispersion matrix
Ω > 0 and shape/skewness parameter γ ∈ Rp, denoted by Z ∼ SNp(ξ,Ω,γ),
if its probability density function is

f(z) = 2φp(z; ξ,Ω) Φ{γ>(z − ξ)}, z ∈ Rp, (B1)

where
φp(z; ξ,Ω) = (2π)−p/2|Ω|−1/2 exp(−δ2skew/2),

is the probability density function of the p-variate Np(ξ,Ω) distribution, Φ(·)
is the univariate N(0, 1) cumulative distribution function and δ2skew = (z −
ξ)>Ω−1(z − ξ) ∼ χ2(p). The vector of means and the covariance matrix of Z
are given, respectively by

µSN = ξ +

√
2

π
δ, and ΣSN = Ω− 2

π
δδ>,
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where, δ = Ωγ/
√

1 + τ2 and τ2 = γ>Ωγ.
We say that a random vectorZ ∈ Rp has a skew-t distribution with location

vector ξ ∈ Rp, dispersion matrix Ω ∈ Rp×p, shape/skewness parameter γ ∈ Rp
and ν > 0 degrees of freedom, denoted by Z ∼ Stp(ξ,Ω,γ, ν), if its probability
density function is given by

f(z) = 2tp(z; ξ,Ω, ν)T
(√ ν + p

ν + δ2skew
γ>(z − ξ); ν + p

)
, (B2)

where

tp(z; ξ,Ω, ν) =
Γ(ν+p2 )

Γ(ν2 )(νπ)p/2
|Ω|−1/2

(
1 +

1

ν
δ2skew

)−(ν+p)/2
, z ∈ Rp,

is the probability density function of the p-variate tp(ξ,Ω, ν) distribution,
δ2skew = (z − ξ)>Ω−1(z − ξ)/p ∼ F (p, ν) and T (x; ν + p) is the T1(0, 1, ν + p)
cumulative distribution function (see, for instance Arellano-Valle et al., 2012;
Azzalini and Genton, 2008, for details).

If Z ∼ Stp(ξ,Ω,γ, ν) then the vector of means and the covariance matrix
of Z is given by

µSt = ξ + α(ν)δ, ν > 1

ΣSt =
ν

ν − 2
Ω− {α(ν)}2δδ>, ν > 2,

where α(ν) = {Γ((ν − 1)/2)/Γ(ν/2)}
√
ν/π. Note that α(ν) →

√
2/π as ν →

∞, and we obtain the results for the skew-normal distribution given above.
Arellano-Valle et al. (2012), show that for the skew-normal and skew-t

distributions the Shannon entropy has explicit form and given in the following
lemmas.

Lemma 4 If X ∼ SNp(ξ,Ω,γ) and Y ∼ Stp(ξ,Ω,γ, ν), then the Shannon entropy
is given by

(i) H(X) = 1
2 log |Ω|+ p

2 (1 + log 2π)− E[log{2Φ(τW )}],
(ii) H(Y ) = 1

2 log |Ω| − log Γ
(
ν+p
2

)
+ log Γ

(
ν
2

)
+ p

2 log(νπ) + ν+p
2

{
ψ
(
ν+p
2

)
−

ψ
(
ν
2

)}
− E[log{2T (τW ∗; ν + p)}],

with W ∼ SN(0, 1, τ), τ2 = γ>Ωγ; W ∗ =
√
ν + pWSt/

√
ν + p− 1 +W 2

St where

WSt ∼ St(0, 1, τ, ν + p− 1).

Lemma 5 Let Z ∼ Np(µ,Σ). If X ∼ SNp(ξ,Ω,γ), Y ∼ Stp(ξ,Ω,γ, ν) then the
negentropy of X and Y are given, respectively by,

(i) HN (X) = 1
2 log |Σ| − 1

2 log |Ω|+ E[log{2Φ(τW )}], and
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(ii) HN (Y ) = 1
2 log |Σ| + p

2 (1 + log 2π) − 1
2 log |Ω| + log Γ

(
ν+p
2

)
− log Γ

(
ν
2

)
−

p
2 log(νπ)− ν+p

2

{
ψ
(
ν+p
2

)
− ψ

(
ν
2

)}
+ E[log{2T (τW ∗; ν + p)}].

Mardia (1970) introduced one of the popular and commonly used mea-
sures of multivariate skewness of an arbitrary p-dimensional random vector Z
with mean vector µ and covariance matrix Σ. Mardia’s skewness coefficient is
defined as,

β1,p = E[{(Z − µ)>Σ−1(Z − µ)}3],

which can be expressed as β1,p = tr{S>(Y )S(Y )}, where S(Y ) = E(Y ⊗
Y > ⊗ Y ), with Y = Σ−1/2(Z − µ) and ⊗ denotes the Kronecker product.
The following lemmas, extracted from Kim and Mallick (2003), allow us to
obtain explicit formulas for S(Y ). In particular, Figure B1 leads us to note
the interaction between the degrees of freedom and the skewness parameter
on the coefficient β1,p proposed by Mardia (1970). In fact, as ν grows, it has
less impact on β1,p.

Lemma 6 If Y ∼ SNp(0,Ω,γ), then

S(Y ) =
√

2/π[δ ⊗Ω + vec(Ω)δ> + (Ip ⊗ δ)Ω− δ ⊗ δδ>],

where δ = Ωγ/
√

1 + τ2. In addition, if γ = 0, that is Y ∼ Np(0,Ω), then β1,p = 0.

Lemma 7 If Y ∼ Stp(0,Ω,γ, ν), then

S(Y ) =
α(ν)ν

ν − 3
[δ ⊗Ω + vec(Ω)δ> + (Ip ⊗ δ)Ω− δ ⊗ δδ>],

where α(ν) =
√
ν/πΓ((ν−1)/2)/Γ(ν/2) and δ = Ωγ/

√
1 + τ2. In addition, if γ = 0,

that is Y ∼ Stp(0,Ω, ν), then β1,p = 0.
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Fig. B1 Plot of Mardia’s skewness coefficient β1,p for the univariate skew t-distribution
with ξ = 0 and Ω = 1.
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