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Additional contents for this article are available online. In Web Appendix A we provide
the proofs that were omitted in the main manuscript. In Web Appendix B we introduced
some examples that illustrates the theoretical results given in the paper. In Web Appendix
C we described simulations of a bivariate Gaussian process, simulations of spatiotempo-
ral processes and additional material for the application discussed in the paper. Some
additional references are given at the end this manuscript.

Web Appendix A Proofs

Proof of Theorem 2 Note that σ′D(h) = −ρXY σXσYM ′(h, νXY , aXY )/σD(h). Also note
that ρXY ≥ 0, σX > 0, σY > 0 and σD(h) > 0 for all h > 0. Thus σ′D(h) > 0 if and only if
M ′(h, νXY , aXY ) < 0. Without loss of generality, we assume that a = 1 and ν = νXY in (7)
Noticing that the terms M ′(h, ν, 1) and g′ν(h) have the same sign, where gν(h) = hνKν(h),
and using the properties of the modified Bessel functions of the second kind (Lebedev,
1965, p. 110), we have that g′ν(h) = −hνKν−1(h). Since Kα(x) = K−α(x) (Lebedev, 1965,
p. 110), Kα(x) > 0, for all x > 0 and α ∈ R (Lebedev, 1965, p. 136), it follows that
g′ν(h) < 0, and the proof is complete. �

Lemma 1. The function

GW(h;κ, µ) =


1

B(2κ, µ+ 1)

∫ 1

h

u(u2 − h2)κ−1(1− u)µdu, if 0 ≤ h < 1,

0, if h ≥ 1,

is decreasing in h for all κ ≥ 0.
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Proof of Lemma 1 Let h1 > 0 and h2 > 0 be such that 0 ≤ h1 ≤ h2. If h1 ≥ 1 , then
GW(h1;κ, µ) = GW(h2;κ, µ) = 0 and GW(·;κ, µ) is a monotone function . If h1 < 1 and
h2 ≥ 1, then GW(h1;κ, µ) ≥ 0, and GW(h2;κ, µ) = 0, then GW(·;κ, µ) is a decreasing
monotone function. If h2 < 1, we distinguish the following two cases:

• For κ = 0, note that 0 ≤ 1 − h22 ≤ 1 − h21 < 1 and 0 ≤ (1 − h22)µ ≤ (1 − h21)µ < 1,
therefore GW(h1;κ, µ) ≥ GW(h2;κ, µ).

• For κ ≥ 1, we define g(u, h) = u(u2−h2)κ−1(1−u)µ/B(2κ, µ+1). Clearly, g(u, h) ≥ 0

for 0 ≤ h < u < 1, then G(h) =
∫ 1

h
g(u, h)du corresponds to GW(h;κ, µ). Hence, by

Leibniz’s formulae,

G′(h) =

∫ 1

h

∂g(u, h)

∂h
du− g(h, h) = −2h(κ− 1)

∫ 1

h

g(u, h)

u2 − h2
du.

Because h > 0, G′(h) < 0 if and only if κ > 1. When κ = 1, g(u, h) := g̃(u) ≥ 0 and
G′(h) = −g̃(h) ≤ 0.

Therefore GW(·;κ, µ) is a decreasing monotone function for h2 < 1. �

Proof of Theorem 3 Without loss of generality, we assume b12 = 1 and note that σ2
D(h)

is an increasing function of h if and only if GW(h;κ, µ) is a decreasing function in h for
all κ. Therefore, the result holds by Lemma 1, since ν + γ12 + 1 > 0. �

Web Appendix B Examples

Example 1: We write M(·, ·, ·) in (10) as M(h,m + 1
2
, 1) = M(h) = exp(−h)Pm(h),

where Pm(x) =
∑m

n=0 anx
n, with an = (2n/n!)

(
m
n

)
/
(
2m
n

)
(Acosta and Vallejos, 2018).

Then, M ′(h) = {P ′m(h)−Pm(h)} exp(−h). Consequently, solving the equation M ′(h) = 0
is equivalent to solve P ′m(h) = Pm(h). Since P ′m(h) = a1 + 2a2h+ · · ·+mamh

m−1, we have
that Q(h) := P ′m(h)−Pm(h) =

∑m
n=0 bnh

n, where bn = (n+1)an+1−an, n = 0, · · · ,m−1,
and bm = −am. Consider

an =
2nm!(2m− n)!

n!(m− n)!
, n = 0, 1, . . . ,m− 1; am =

2mm!

(2m)!
> 0.

Note that

bn =
−2nm!(2m− n− 1)!)

n!(m− n− 1)!(2m)!

(
2m− n
m− n

− 2

)
=

−2nm!(2m− n− 1)!)n

n!(m− n− 1)!(2m)!(m− n)
< 0,

for n = 0, · · · ,m− 1, and m ≥ 1. Thus, b0 = 0 and bn < 0, for n = 1, · · · ,m, and m ≥ 1.
It then follows that M ′(h) = 0 ⇐⇒ h = 0. Moreover, M ′(h) < 0 for h > 0, because
M ′(h) = Q(h)e−h, and Q(·) is a polynomial with negative coefficients. Therefore, we have
explicitly shown that ψc(h) is a decreasing function of h. �
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Figure S1: ψc(‖h‖) versus ‖h‖. (a) c = 1.5; (b) c = 2; (c) c = 2.5.

Web Appendix C Numerical Experiments

Web Appendix C.1 Bivariate Simulations

Consider a Gaussian bivariate random field with mean vector (µ1, µ2)
> = (0, 0)> and

Matérn Cross-Covariance function (Gnieiting, 2010) with the following two set of pa-
rameters (following Gnieiting, 2010): (a) separable case: σ2

X = σ2
Y = 1, ρXY = 0.5,

νX = νY = νXY = ν = 0.5, and aX = aY = aXY = a = 0.2; (b) non-separable case
σ2
X = σ2

Y = 1, ρXY = 0.5, νX = 1.5, νY = 0.5, νXY = 1.0, aX = 1, aY = 0.2, and
aXY = 0.6. The case (a) is know as the parsimonious bivariate Matérn model, and (b) as
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the full bivariate Matérn model. As in Gnieiting (2010) we simulate in a grid of size 20×20,
for which each of 1000 simulations were generated from both a correct and a misspecified
model, i.e., the parameter in the separable case was estimated under a separable and
a non-separable scheme for the covariance function, and similarly for the non-separable
case. To highlight the effect of covariance estimates, the means of the process were not
estimated, and the smoothness parameter, ν’s, were also fixed.

Regarding the range parameters, a’s, we estimated φ = 1/a because this is the param-
eterization programmed in the GeoFit function of the R package GeoModels (Bevilacqua
et al., 2023), which we used in this simulation study. Table S1 shows the average, stan-
dard deviation, and root mean square error (RMSE) of the estimated parameters for the
separable model when the data are simulated from a separable and a nonseparable model,
respectively. In addition, Table S2 shows the same information as in Table S1 but for
the estimated parameters for a nonseparable model when the data are simulated from
a nonseparable and a separable model, respectively. In both cases, the estimates for the
well-specified model perform better in terms of bias and variance. However, when the
data come from a separable model and we estimate assuming a non-separable model,
this misspecification causes greater uncertainty in the estimations. In all cases, only the
simulations that include the estimation of the variance of the parameters were left, since
it is essential for the hypothesis testing described below.

Well-specified Misspecified
ρXY φ σ2

X σ2
Y ρXY φ σ2

X σ2
Y

mean 0.4982 5.0452 1.0208 1.0211 0.4866 4.8462 1.1632 0.9911
sd 0.0188 0.7377 0.1503 0.1484 0.0313 0.8473 0.2671 0.1695

RMSE 0.0189 0.7387 0.1516 0.1498 0.0341 0.8605 0.3128 0.1696

Table S1: Simulation mean, standard deviation, and root mean square error (RMSE) of
estimations for separable model when the data are simulated from a separable and a
nonseparable model, respectively.

Well-specified Misspecified
ρXY φX φY φXY σ2

X σ2
Y ρXY φX φY φXY σ2

X σ2
Y

mean 0.497 1.001 1.657 5.167 1.010 1.031 0.414 0.836 1.224 4.641 0.690 0.957
sd 0.077 0.069 0.243 1.700 0.152 0.320 0.073 0.097 0.196 1.534 0.169 0.305

RMSE 0.077 0.069 0.243 1.708 0.152 0.321 0.112 0.190 0.484 1.575 0.352 0.308

Table S2: Simulation mean, standard deviation, and root mean square error (RMSE) of
estimations for a nonseparable model when the data are simulated from a nonseparable
and a separable model, respectively.

For the hypothesis testing problem H0 : ψc(‖h‖) ≥ 0.95 versus H1 : ψc(‖h‖) < 0.95
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the critical region of size α is

Rα =

{
ψ̂c(h) : ψ̂c(h) < 0.95− zα

√
̂

var(ψ̂c(h))

}
,

where zα is the upper quantile of the standard normal distribution, and

̂
var(ψ̂c(h)) =

2

π
exp

{
− c2

σ2
D(h; θ̂)

}{
c2

σ2
D(h; θ̂)

V̂σD(h)

}
,

V̂σD(h) =
1

4σ2
D(h; θ̂)

∇σ2
D(h; θ̂)>Vθ̂∇σ

2
D(h; θ̂).

Because µD = 0 was not estimated, VµD = 0, and Vθ̂ was obtained from the inverse of the
observed Fisher information matrix. Denote by θ0 the true parameter vector of the cross-
covariance function, then in both parametrizations when c = z0.025 ≈ 1.96 and h = 0, we
have that ψc(0,θ0) = 0.95.

To evaluate the rate of rejection of the hypothesis test defined above, we vary ‖h‖ and
c. Indeed, ‖h‖ varies from 0 to 30 with step 0.1, and c from 1 to 2 with step 0.01, leaving the
set of parameters fixed. For each value of ‖h‖ and c we quantify the number of times that

ψ̂ belongs to the rejection region for a test of size α = 0.05. Figure S2 shows the proportion
of times (with respect to the number of simulations) the test rejected the null hypothesis
in function of ‖h‖, each panel shows the model that was used to estimate the parameters,
whereas the curves correspond to two fixed c values (1.645 and 1.960, respectively), and
to whether the estimation method is correct or incorrect. In the nonseparable model
there is a greater discrepancy in rejection rates between a correctly specified model and
a misspecified when the value of c is high, but this discrepancy decreases when the value
of c decreases, possibly influenced by the fact that the PA decreases considerably as the
value of c varies, so that for relatively small values of ‖h‖, ψ̂ belongs to the rejection
region. The same pattern is observed for the separable model, but the increasing ratio is
slower. Similar information is displayed in Figure S3 but in this case it is shown a plot
of the rejection rate versus c. All curves are decreasing and the differences for the well
specified and misspecified models can be noticed looking at the rate of decaying of each
curve.
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Figure S2: Rejection rate versus ‖h‖ for the test H0 : ψc(‖h‖) ≥ 0.95 versus
H1 : ψc(‖h‖) < 0.95, for c = 1.960 and c = 1.645, considering the both well-specified
misspecified models.
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Figure S3: Rejection rate versus c for the test H0 : ψc(‖h‖) ≥ 0.95 versus H1 : ψc(‖h‖) <
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Web Appendix C.2 Spatio-temporal Simulations

We used the GeoModels package version 1.0.8 (Bevilacqua et al., 2023) in R for the
simulations, as it allowed us to simulate spatiotemporal processes with linear mean and
our defined correlation structures. A regular grid of size NS ×NS was considered for the
spatial coordinates, NT points in time from 1 to NT with step 1. Five hundred runs were
considered in this study. Examples are shown in Figures S4 and S5.

In Figures S6–S12 we display boxplots with the estimates of the probability of agree-
ment as a function of ‖h‖, u and c for a spatiotemporal Gaussian process with negative
and positive linear trends, with separable exponential covariance functions and also a
non-separable Iacocesare covariance structure with fixed parameters given in Table 1 in
the manuscript. The figures are generated for NS = 20 and NS = 50. The boxplots show
the true values in red and the estimates in blue in each case. To observe the evolution of
the estimated PA, each panel includes five boxplots, one for each different value of ‖h‖
for s set of fixed c and u values.

Figure S4: Simulated realizations of a spatiotemporal process defined by a Gaussian ran-
dom field with an exponential separable covariance function for NS = 50 and NT = 6.

7



Figure S5: Simulated realization of a spatiotemporal process defined by a Gaussian random
field with an Iacosecare non-separable covariance function for NS = 50 and NT = 6.
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Figure S6: Estimates of the probability of agreement as a function of ‖h‖, u and c for a
spatiotemporal Gaussian process with a negative linear trend and an exponential separable
covariance structure with fixed parameters given in Table 1 (in the manuscript), and for
NS = 20. Note differences in range limits of the y-axis among the nine panels.
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Figure S7: Estimates of the probability of agreement as a function of ‖h‖, u and c for a
spatiotemporal Gaussian process with a positive linear trend and an exponential separable
covariance structure with fixed parameters given in Table 1 (in the main text), and for
NS = 20. Note differences in range limits of the y-axis among the nine panels.
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Figure S8: Estimates of the probability of agreement as a function of ‖h‖, u and c for a
spatiotemporal Gaussian process with a negative linear trend and an exponential separable
covariance structure with fixed parameters given in Table 1 (in the main text), and for
NS = 50. Note differences in range limits of the y-axis among the nine panels.
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Figure S9: Estimates of the probability of agreement as a function of ‖h‖, u and c for a
spatiotemporal Gaussian process with a positive linear trend and an exponential separable
covariance structure with fixed parameters given in Table 1 (in the main text), and for
NS = 50. Note differences in range limits of the y-axis among the nine panels.
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Figure S10: Estimates of the probability of agreement as a function of ‖h‖, u and c
for a spatiotemporal Gaussian process with a negative linear trend and a non-separable
Iacocesare covariance structure with fixed parameters given in Table 1 (in the main text),
and for NS = 20. Note differences in range limits of the y-axis among the nine panels.
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Figure S11: Estimates of the probability of agreement as a function of ‖h‖, u and c
for a spatiotemporal Gaussian process with a negative linear trend and a non-separable
Iacocesare covariance structure with fixed parameters given in Table 1 (in the main text),
and for NS = 20. Note differences in range limits of the y-axis among the nine panels.
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Figure S12: Estimates of the probability of agreement as a function of ‖h‖, u and c
for a spatiotemporal Gaussian process with a negative linear trend and a non-separable
Iacocesare covariance structure with fixed parameters given in Table 1 (in the main text),
and for NS = 50. Note differences in range limits of the y-axis among the nine panels.
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The interpretation of the test when H0 is rejected and h is variable is the same for each
fixed value of u. However, when h is fixed and u is variable, the decision about H0 does
not necessarily follow the same structure unless the temporal trend is constant and the
covariance model is monotonically decreasing in time. Moreover, if the covariance model
is monotonically decreasing in time, then if H0 is rejected for u = 0, H0 is rejected for all
u.

Web Appendix C.3 Application

In Figure S13 we present an empirical description of the dataset used in the application.
Figure S13 (top left) displays an empirical semi-variogram that show the presence of
spatial autocorrelation. Figure S13 (top right) shows a temporal semi-variogram which
has an unstable behavior possibly due to the small sample size. Figure S13 (bottom left)
shows a sequence of semi-variograms when the time is fixed. Finally, S13 (bottom left)
displays a continuous space time semi-variogram as a surface summarizing the information
provided in previous plots. For the hypothesis testing problem H0 : ψc(‖h‖, u) ≥ 0.95,
versus H1 : ψc(‖h‖, u) < 0.95 the test statistic and p-value were determined as follows

z =
ψ̂c(h, u)− 0.95√

̂
var(ψ̂c(h, u))

⇒ p-value = Φ(z),

where Φ(·) is the cumulative probability function of the standard normal distribution,
and

̂
var(ψ̂c(h, u)) =

2

π
exp

{
− (c− µ̂D)2

σ2
D(h, u; θ̂)

}{
V̂µD +

(c− µ̂D)2

σ2
D(h, u; θ̂)

̂VσD(h, u)

}
,

̂VσD(h, u) =
1

4σ2
D(h, u; θ̂)

∇σ2
D(h, u; θ̂)>Vθ̂∇σ

2
D(h, u; θ̂).

In this case, µ̂D = β̂1u, and V̂µD = u2Vβ̂1 . Figure S14 shows
̂

var(ψ̂c(h, u)) for the separable
case. As expected, the variance is quite small because of the dimension of the data vector,
which is equal to 25080. Accordingly the p-values are practically 0 or 1 (Figure S15).
Because the dimension of the data vector is large, it is practically impossible to estimate
the parameters of the variance components by maximum likelihood. Instead, we used
the pairwise method provided in the R package GeoModels (Bevilacqua et al., 2023).
We estimated Vθ using Fisher’s information, which requires inverting matrices of order
25080×25080. This is impractical for the Iacocesare covariance. However, in the separable
case, the temporal and spatial covariance matrices are of dimension 15×15 and 1672×1672,
respectively. Thus, using the properties of the Kronecker product, we were able to obtain
the estimates of the variances needed to perform the hypothesis testing for the dataset
used in the application.
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Figure S13: Empirical description of the data set.
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Figure S14: Variance of PA estimated in the separable case.
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Figure S15: Variance of PA estimated in the separable case.
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