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Abstract

We develop diagnostic tools for estimating equations, useful for the analysis of data with
longitudinal structure. The gradient statistic introduced by Terrell [Comp. Sci.Stat.
34: 206-215, 2002] is used to propose a case deletion measure, as well as a statistic for
the detection of outlying observations using a mean-shift outlier model. The proposed
methodology is illustrated with an example.

Keywords: Cook’s distance, Gradient statistic, Mean shift outlier model

1. Introduction

The assessment of influence on the parameter estimates in statistical models has
been an important concern of various researchers in the last decades. Currently, there is
considerable interest in developing diagnostic measures for general frameworks. The case-
deletion methodology, which consists of studying the impact on the parameter estimates
after dropping individual observations, is probably the most employed technique to detect
influential or outlying observations. A related formulation that allows the extension of
some of these ideas to more general settings is the mean-shift outlier model (Cook and
Weisberg, 1982; Wei and Shih, 1994). Some few authors have developed measures to carry
out influence diagnostic in generalized estimating equations (GEE) mainly using the case-
deletion approach (Preisser and Qaqish, 1996; Preisser and Perin, 2007; Venezuela et al.,
2007; Preisser et al., 2008). This work considers two approaches to outlier detection
in estimating functions which have not been completely explored. Specifically, we use
the gradient-type statistic introduced by Lemonte (2016) (see also Lemonte, 2013) to
assess the presence of outlying observation by applying a mean-shift outlier model and
by extending case deletion measure proposed for Enea and Plaia (2017). One of the main
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advantages of the test statistic proposed by Terrell (2002) is that it is defined in terms
of a bilinear form, requires little computational effort and is asymptotically equivalent
to the score statistic. From the diagnostic perspective, it is important to have several
alternatives to assess the influence of observations and to develop relevant diagnostics
measures, which can identify observations that might otherwise go unnoticed.

The remainder of the paper unfolds as follows. In Section 2 we review the definition of
gradient-type statistic for hypothesis testing in the framework of estimation functions and
present the generalized estimating equation method for the analysis of longitudinal data.
Diagnostic measures by using case elimination techniques and the mean-shift outlier
model are discussed in Section 3. The methodology is illustrated in Section 4 considering
a dataset previously analyzed using influence diagnostic procedures and robust methods.
Some concluding remarks are given in Section 5. Supplementary Material includes details
about the gradient statistic for inference functions, proofs of the theoretical results and
the analysis of an additional real dataset.

2. Backgroud

Let Y = (Y ⊤
1 , . . . ,Y

⊤
n )

⊤ denote the data vector such that Y i = (Yi1, . . . , Yini)
⊤

are independent for i = 1, . . . , n, and consider the class of additive inference functions,
defined as:

Ψn(θ;Y ) =

n∑
i=1

Ψi(θ;Y i), (1)

where Ψi : Θ → Rp are independent functions with θ ∈ Θ ⊆ Rp. Next, we will remove
the dependence on Y in our notation. We also assume that the conditions established by
Yuan and Jennrich (1998) are satisfied, which allows us to guarantee that the sequence

of roots {θ̂n}n≥1 of the estimation equation Ψn(θ) = 0 is consistent and asymptotically

normal. That is, it is assumed that there is a unique θ0 ∈ Θ such that θ̂n
p→ θ0.

Moreover, n−1/2Ψn(θ0)
D−→ Np(0,V (θ0)), and

√
n(θ̂n − θ0)

D−→ Np(0,G
−1(θ0)), where

G(θ) = S⊤(θ)V −1(θ)S(θ) denotes the Godambe information matrix, with V (θ) =
E{Ψn(θ)Ψ

⊤
n (θ)} and S(θ) = E{−∂Ψn(θ)/∂θ

⊤} being the variability and sensitivity
matrices, respectively. Thus, the gradient-type statistic for testing hypotheses such as
H0 : θ = θ0 against H1 : θ ̸= θ0 in the context of inference functions (see Lemonte,
2016, Chapter 5), assumes the form:

Tn = Ψ⊤
n (θ0)V

−1(θ0)S(θ0)(θ̂n − θ0), (2)

which asymptotically follows a chi-squared distribution with p degrees of freedom under
the null hypothesis.

Liang and Zeger (1986) proposed a marginal approach to model repeated measure-
ments with longitudinal structure. Specifically, they considered that the expectation
E(Y i) = µi is related to p explanatory variables through the linear predictor ηi = Xiβ
with Xi being an ni × p model matrix and ηi = g(µi), for some monotone and con-
tinuously differentiable link function g(·). It is assumed that the first two moments
of the marginal distribution are given by E(Yij) = µij , and var(Yij) = ϕ−1 V (µij), for
i = 1, . . . , n; j = 1, . . . , ni, where V (µ) is the variance function and ϕ is a scale parameter.
The estimation of the coefficients vector β ∈ Rp is carried out by solving the equation

Ψn(β) = ϕ

n∑
i=1

( ∂µi

∂β⊤

)⊤
{A1/2

i Ri(α)A
1/2
i }−1(Y i − µi) = 0, (3)
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The local model matrix F i(β) = ∂µi/∂β
⊤ can be written as F i = D−1

i Xi, with Di =

∂ηi/∂µ
⊤
i . Let Σi(α) = ϕ−1A

1/2
i Ri(α)A

1/2
i , where Ai = diag(V (µi1), . . . , V (µini)), and

Ri(α) is an ni × ni working correlation matrix associated with the ith experimental
unit whose element (j, j′) represents the assumed correlation between Yij and Yij′ for a
parameter of association α. Additional details regarding the gradient test and estimation
in GEE are described in Appendices A and B of the Supplementary Material, respectively.

3. Diagnostic measures

Next, we describe two procedures to identify outlying observations. First, we develop
diagnostic measures considering a mean-shift outlier model. Subsequently, we present an
approach of case deletion using a distance based on the gradient-type statistic.

3.1. Outlier detection through the mean-shift outlier model

A general approach to detect outliers in regression models is the mean-shift outlier
model (see Cook and Weisberg, 1982, Sec. 2.2.2). It has been demonstrated that this is
equivalent to the assessment of influence by case-deletion in linear and non-linear models
when the response belongs to the exponential family (Wei and Shih, 1994). Thus, an
approach to identify outlying observations in GEE is the mean-shift outlier model, defined
by g(µj) = ηj , with

ηj =

{
Xiβ +Biγi, j = i,

Xjβ, j ̸= i,
(4)

for j = 1, . . . , n, where Bi is an ni ×mi known matrix and γi is an mi × 1 parameter
vector. This formulation allows us to identify outlying observations from an hypothesis
testing perspective. In fact, in order to detect whether the ith subject is an outlier, we
can test the hypotheses

H0 : γi = 0 against H1 : γi ̸= 0. (5)

Pardo and Hobza (2014) proposed to assess the hypotheses in (5) based on the generalized
Wald and score-type statistics defined by Rotnitzky and Jewell (1990). Now, we suggest
to test (5) considering the gradient-type statistic described in Lemma A.2 from the
Supplementary Material with δi = (γ⊤

i ,β
⊤)⊤ being the parameter of interest. In this

context, we have that the variability and sensitivity matrices for δi are respectively given
by:

V (δi) = ϕ2

(
B⊤

i W iΛiW iBi B⊤
i W iΛiW iXi

X⊤
i W iΛiW iBi X⊤WΛWX

)
,

S(δi) = ϕ

(
B⊤

i W iBi B⊤
i W iXi

X⊤
i W iBi X⊤WX

)
,

where X = (X⊤
1 , . . . ,X

⊤
n )

⊤ and W =
⊕n

i=1 W i being a block diagonal matrix, with

W i = D−1
i A

−1/2
i R−1

i (α)A
−1/2
i D−1

i , and Λ =
⊕n

i=1 Λi with Λi = Di Cov(Y i)Di.
These expressions enables the computation of score-type and gradient-type statistics for
testing the hypothesis defined in (5), respectively, as

Ri =
1

n
ϕ̃−2Ψ⊤

1 (δ̃i)(B
⊤
i W̃ iP̃ iΛ̃iW̃ iBi)

−1Ψ1(δ̃i),

Ti = ϕ̃−1Ψ⊤
1 (δ̃i)(B

⊤
i W̃ iP̃ iΛ̃iW̃ iBi)

−1B⊤
i W̃ iP̃ iBiγ̂i,
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where P i = I −ΛiW iXi(X
⊤WΛWX)−1X⊤

i W i and Ψ1(δi) = ϕB⊤
i W iDi(Y i −µi)

must be evaluated at δ̃i = (0, β̂⊤)⊤, i.e., the estimate obtained under the null hypothesis

H0 : γi = 0. Here δ̂i = (γ̂⊤
i , β̂

⊤
∗ )

⊤ represent the estimates for the model defined
in (4). Hence, we reject H0 : γi = 0 by comparing the values of Ri or Ti with the
percentile 100(1−α)% of the chi-square distribution withmi degrees of freedom. One-step

approximations for γ̂i and β̂∗ are given in Proposition C.1 of the electronic supplementary
material.

3.2. A case deletion measure

An interesting perspective for the detection of atypical observations based on case
deletion techniques is provided by Enea and Plaia (2017), who proposed to use a gradient
distance as an influence measure. Let Ψ(i)(θ) =

∑n
j ̸=i Ψj(θ) be the inference function

given in (1) when the ith function is discarded. Therefore, the gradient-type statistic

defined in (2), together with the first-order Taylor approximation of Ψ(i)(θ) around θ̂,
leads to the following one-step approximation:

θ̂1
(i) = θ̂ +

{
−

∂Ψ(i)(θ̂)

∂θ⊤

}−1

Ψ(i)(θ̂),

where θ̂(i) denotes the estimate of θ based on Ψ(i)(θ). Following the same argument

used by Jørgensen and Knudsen (2004), we can write θ̂1
(i) − θ̂ = S−1(θ̂)Ψ(i)(θ̂), with

S(θ̂) = E{−∂Ψ(θ)/∂θ⊤}
∣∣
θ=θ̂

. Thus, pre-multiplying by V −1(θ̂)S(θ̂) and noting that

Ψ(i)(θ̂) = −Ψi(θ̂) we can define the gradient distance as:

TDi = Ψ⊤
i (θ̂)V

−1(θ̂)S(θ̂)(θ̂ − θ̂(i)). (6)

Evidently, these results provide the framework to develop diagnostic measures for
assessing the effect of the ith subject (or cluster) on the estimate of β based on the
estimating equation given in (3). Proposition C.1 from the Supplementary Material
provides an alternative way to define a version of Cook’s distance for the context of
GEE, which is defined as (see Cook and Weisberg, 1982) Di = (β̂ − β̂(i))

⊤M(β̂ − β̂(i)),
for i = 1, . . . , n, where M is a p×p semipositive definite matrix. Using Equation (C.2) of
Supplementary Material and following the recommendations of Vens and Ziegler (2012),

we can choose M as the inverse of the empirical estimator of covariance matrix for β̂ (see
Appendix B of electronic supplementary material), which leads us to define a one-step
approximation of the Cook’s distance as:

D1
i = (β̂ − β̂1

(i))
⊤X⊤ŴX(X⊤Ŵ Λ̂ŴX)−1X⊤ŴX(β̂ − β̂1

(i))

= {γ̂1
i }⊤B

⊤
i Ŵ iXi(X

⊤Ŵ Λ̂ŴX)−1X⊤
i Ŵ iBiγ̂

1
i . (7)

This provides an alternative to the influence measures proposed by Preisser and Qaqish
(1999) and Venezuela et al. (2007). In fact, by choosing M as the inverse of the model-

based estimator of the covariance matrix for β̂, leads to the proposal of Venezuela et al.
(2007), that is

D1
i,VBS = ϕ̂ (β̂ − β̂1

(i))
⊤X⊤ŴX(β̂ − β̂1

(i))

= ϕ̂ {γ̂1
i }⊤B

⊤
i Ŵ iXi(X

⊤ŴX)−1X⊤
i Ŵ iBiγ̂

1
i , (8)

which allow us to manipulate any subset of observations by using the matrix Bi.
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4. Example: GUIDE study data

We revisit a dataset from the Guidelines for Urinary Incontinence Discussion and
Evaluation (GUIDE) study, introduced by Preisser and Qaqish (1999) and which aims
to assess the impact of urinary incontinence on the lives of elderly patients over 76 years
of age. The response is binary, indicating whether the individual perceives that his or
her daily routine is affected by accidental urine leakage. There are 137 elderly patients
from 38 medical practices (i.e. cluster). Observations are unbalanced, ranging from 1
to 8 patients per practice. Five regressors are available, gender (sex), age (age), daily
leaking accidents (accidents), severity of leaking (severe) and number of times using the
toilet daily (toilet). A logistic link function was considered for the marginal model as
follows:

logit(µij) = β0 + β1 sex + β2 age + β3 accidents + β4 severe + β5 toilet, (9)

where µij denotes, for jth patient in ith cluster, the probability of being bothered.
In addition, the exchangeable working correlation structure is assumed. The GUIDE
dataset and R code to perform the analysis described in this section are available at
github4. Several papers have used the GUIDE data for robust estimation or diagnostic
analysis in GEE. For example, Preisser and Qaqish (1999) and Qu and Song (2004) found
that the harmful effect of patients 8, 19, 42, 44 and 88 on the parameter estimates can
be mitigated by considering robust estimation procedures, whereas Preisser and Garcia
(2005) and Hammill and Preisser (2006) detected patients 8, 44 and 122 and clusters
27, 41, 107 and 156 as outliers. More recently, Jung (2008) using the local influence
approach studied the role of patients 8 and 44. The supplementary material contains all
the tables and figures listed below.

Model given in (9) was fitted using GEE. Table D.1 presents the results of the fit for
the entire dataset as well as for subsets where certain observations have been removed.
It should be stressed that patients 8 and 44 produce a change in the inference associated
with the sex and toilet variables, respectively, whereas observation 64 does not produce
inferential changes but increases the p-value of the sex and age variables. It is interesting
to note that observations 64 and 88 have a strong impact on the empirical variance
estimator, while patients 8, 44 and 88 exert a large effect on the model-based variance
estimator. Details on how to study the role of outliers on the covariance matrices (or

equivalently the confidence ellipsoids) associated with β̂ can be found in Pardo and
Alonso (2012).

Figure D.1 (a) presents the cluster-level gradient distance TDi, for i = 1, . . . , 38.
Thus, the gradient distance allows us to identify clusters 27, 41, 107, 156 and 235 as
medical practices with a strong influence on the fitting results. It should be noted that
patients 8, 44 and 88 are in clusters 27, 107 and 156, respectively. Figure D.1 (b) shows
an interesting aspect, the one-step approximation of TDi given in Equation (6) presents
a strong agreement with the bilinear form distance obtained by deleting the ith cluster
and fully iterating the fitting procedure until reach convergence.

Now, consider that we are interested on detecting which observations within a cluster
are outliers. Thus, we can employ Bi = (0, . . . , 1, . . . , 0)⊤ an ni × 1 vector with one at
the jth position and zero elsewhere, in which case the null hypothesis H0 : γij = 0 is
rejected if Tij or Rij exceeds the quantile 1 − α of the chi-square distribution with one

4https://github.com/faosorios/outlier_GEE
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degree of freedom. This also allows us to obtain versions of the Cook’s distance using
Equations (7) and (8), say Dij and Dij,VBS, oriented to determine the effect of the jth
observation in the ith cluster on the parameter estimates. For the GUIDE dataset, the
one-step approximation D1

ij (see Figure D.2 (a)) reveals observations 8, 44 and 64 as
influential. To the best of our knowledge, previously patient 64 had not been detected
in the GUIDE dataset, who was bothered although reporting a very low frequency of
toileting and leaking accidents. This patient exerts a strong impact on the estimation
of the regression coefficients, and on the empirical estimator of the covariance of the
coefficients estimates. We stress that using the D1

ij,VBS distances proposed by Venezuela
et al. (2007) it is not possible to identify observation 64 as influential. Figure D.3 presents
gradient-type and score-type statistics to assess outlying observations. We can note that
both statistics coincide in identifying patient 86 as an outlier. Indeed, this is a female
patient who is bothered by the high number of leaking accidents, while reporting low
severity and toileting. In addition, observation 86 has effect on the estimation of the
correlation parameter α and exerts a slight change on the estimation of CovEmp(β̂).
We also note that in previous works using this dataset this observation had not been
identified.

5. Concluding remarks

This work provides an alternative to the diagnostic procedures proposed by Preisser
and Qaqish (1996) and Venezuela et al. (2007) who used case deletion techniques, as well
as to the developments reported by Wei and Fung (1999) and Pardo and Hobza (2014)
who proposed methods for outlier identification using the mean-shift outlier model. Ex-
plicit expressions were obtained for the gradient-type statistic Ti (and the score-type
statistic, Ri) associated with the hypothesis in Equation (5). It is worth noting that the
one-step estimators developed in this work have allowed us to develop one-step approx-
imations for the Cook’s distance, proposal that maintains the simplicity of the results
reported by Preisser and Qaqish (1996) and Venezuela et al. (2007). Additionally, our
findings have allowed us to extend the gradient distance introduced by Enea and Plaia
(2017) to the general context of inference functions with particular emphasis on GEE.

Data availability

We have added links to data/codes in the manuscript.
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