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Abstract. In this supplementary material, we present details about the gra-
dient statistic for inference functions, a brief description of the estimation

procedure for generalized estimating equations (GEE), proofs of the theoreti-

cal results, tables and figures regarding to the example of the main paper and
an additional real data analysis.

Appendix A. About the gradient test statistics for
inference functions

A.1. Asymptotic equivalence between gradient-type and score-type test
statistics.

Proposition A.1. The gradient-type statistic given in Equation (2) from the man-
uscript and the score-type test statistic defined by Rotnitzky and Jewell (1990),

Rn =
1

n
Ψ>n (θ0)V −1(θ0)Ψn(θ0),

are asymptotically equivalent under H0 : θ = θ0. Their common asymptotic distri-
bution is χ2(p).

Proof. To establish the asymptotic equivalence between the gradient-type and score-
type statistics, we can use some results available in Yuan and Jennrich (1998). In
fact,

1√
n

Ψn(θ0)
D−→ Np(0,V (θ0)),

√
n(θ̂n − θ0)

D−→ Np(0,S
−1(θ0)V (θ0)S−>(θ0)).

Now, consider the Taylor expansion of Ψn(θ) around θ = θ0, i.e.

Ψn(θ)
a
= Ψn(θ0) +

∂Ψn(θ)

∂θ>

∣∣∣
θ=θ0

(θ − θ0),

where
a
= denotes asymptotic equivalence. Evaluating at θ = θ̂n and using that

Ψn(θ̂n) = 0, yields(
− 1

n

∂Ψn(θ)

∂θ>

∣∣∣
θ=θ0

)√
n(θ̂n − θ0)

a
=

1√
n

Ψn(θ0),
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because of the additivity of the inference function in Equation (1) from the manu-

script, we obtain − 1
n∂Ψn(θ)/∂θ>|θ=θ0

a.s.−→ S(θ0). Henceforth, it follows

S(θ0)
√
n(θ̂n − θ0)

a
=

1√
n

Ψn(θ0).

Thus, under H0 : θ = θ0, it is straightforward to note that

Tn ..=
1√
n

Ψ>n (θ0)V −1(θ0)
√
nS(θ0)(θ̂n − θ0)

a
=

1√
n

Ψ>n (θ0)V −1(θ0)
1√
n

Ψn(θ0)

a
= Rn,

where Rn = 1
nΨ>n (θ0)V −1(θ0)Ψn(θ0) corresponds to the score-type statistic for

testing H0 : θ = θ0 (see Boos, 1992). This allows us to note that Tn is asymptoti-

cally equivalent to Rn and therefore, under H0, we have Tn
D−→ χ2(p). �

A.2. Gradient-type statistic for hypotheses about subvectors. Consider
that the parameter vector is partitioned as θ = (θ>1 ,θ

>
2 )> and suppose that we

have interest in testing the hypothesis

H0 : θ1 = θ0
1, against H1 : θ1 6= θ0

1,

where θ1 ∈ Rr and θ2 ∈ Rp−r. Thus, assume the following partition of matrices
S(θ) and V (θ),

S(θ) =

(
S11(θ) S12(θ)
S21(θ) S22(θ)

)
, V (θ) =

(
V 11(θ) V 12(θ)
V 21(θ) V 22(θ)

)
.

The following lemma, adapted from Lemonte (2016), presents the gradient-type
test statistic for hypotheses about subvectors.

Lemma A.2. Under assumptions of Theorem 5.2 in Lemonte (2016) and under
H0 : θ1 = θ0

1, we have that

Tn = Ψ>1 (θ̃)Q11(θ̃)(θ̂1 − θ0
1)

D−→ χ2(r), (A.1)

where Ψn(θ) = (Ψ>1 (θ),Ψ>2 (θ))> with Ψ1(θ) an r-dimensional inference func-
tion associated to θ1, Q11(θ) = V −1

11·2(θ)
(
S11(θ) − V 12(θ)V −1

22 (θ)S21(θ)
)

and

V 11·2(θ) = V 11(θ)− V 12(θ)V −1
22 (θ)V 21(θ).

Appendix B. Estimation in GEE

The system of equations defined in Equation (3) from the main paper typically is
solved through iteratively weighted least squares (IWLS) with working response
Zi = F iβ + Y i − µi. Thus, the estimate of β is updated as

β(r+1) =
( n∑
i=1

F>i Σ−1
i F i

)−1 n∑
i=1

F>i Σ−1
i Zi,

where the working response, the local model matrix and the working covariance ma-

trix Σi must be evaluated at the current estimation β(r). LetW i = D−1
i A

−1/2
i R−1

i (α)
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A
−1/2
i D−1

i and Z∗i = Xiβ +Di(Y i − µi), for i = 1, . . . , n. Thus, we can write

β(r+1) =
( n∑
i=1

X>i W iXi

)−1 n∑
i=1

X>i W iZ
∗
i

= (X>WX)−1X>WZ∗,

where X = (X>1 , . . . ,X
>
n )>, W = ⊕ni=1W i and Z∗ = (Z>1 , . . . ,Z

>
n )>. Note

that this procedure should be alternated with the estimation of φ and α using the
method of moments (see Liang and Zeger, 1986). Considering not very restrictive

conditions of regularity, Liang and Zeger (1986) showed that
√
n(β̂n − β0) has an

asymptotic normal distribution with zero mean and covariance matrix defined as

G−1(β) = lim
n→∞

nS−1
n (β)V n(β)S−1

n (β),

where

Sn(β) =

n∑
i=1

F>i Σ−1
i F i, V n(β) =

n∑
i=1

F>i Σ−1
i Cov(Y i)Σ

−1
i F i.

Liang and Zeger (1986) also showed that the empirical estimator of covariance

matrix for β̂, let say,

CovEmp(β̂) = Ĝ−1 = Ŝ−1
n V̂ nŜ

−1
n ,

with,

Ŝn = φ̂

n∑
i=1

X>i Ŵ iXi, V̂ n = φ̂2
n∑
i=1

X>i Ŵ ir̂ir̂
>
i Ŵ iXi,

where ri = Di(Y i−µi), for i = 1, . . . , n, is a consistent estimator ofG−1(β). When
the working correlation matrix is correctly specified, the model based estimator of

the covariance matrix for β̂ is given by:

CovMB(β̂) = φ̂−1
( n∑
i=1

X>i Ŵ iXi

)−1

= φ̂−1(X>ŴX)−1.

Appendix C. Main results

C.1. One-step approximation for the estimates under the mean-shift out-
lier model.

Proposition C.1. Let γ̂i and β̂∗ be the estimates of γi and β for the mean-shift
outlier model given in Equation (4) from manuscript. Based on the initial estimates

γ̂0
i = 0 and β̂0

∗ = β̂, we have the following one-step approximations:

γ̂1
i = (B>i W i(I −Hi)Bi)

−1B>i W iri, (C.1)

β̂1
∗ = β̂ − (X>WX)−1X>i W iBi(B

>
i W i(I −Hi)Bi)

−1B>i W iri, (C.2)

where X = (X>1 , . . . ,X
>
n )> and W =

⊕n
i=1W i being a block diagonal matrix,

with W i = D−1
i A

−1/2
i R−1

i (α)A
−1/2
i D−1

i , Hi = Xi(X
>WX)−1X>i W i, and

ri = Di(Y i − µi), for i = 1, . . . , n.
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Proof. We use one single step of the Newton-scoring algorithm (Jørgensen and

Knudsen, 2004) considering the following initial estimates δ̂0
i = (γ̂0>

i , β̂0>
∗ )> =

(0, β̂>)>. Thus, we can write(
γ̂1
i

β̂1
∗

)
=

(
0

β̂

)
+

(
B>i W iBi B>i W iXi

X>i W iBi X>WX

)−1(
B>i W iDi(Y i − µi)
X>WD(Y − µ)

)
=

(
B>i W iBi B>i W iXi

X>i W iBi X>WX

)−1(
B>i W iZ

∗
i

X>WZ∗

)
, (C.3)

where Z∗ = η + D(Y − µ), η = Xβ and β̂ = (X>WX)−1X>WZ∗. Using
results of inverses for partitioned matrices and noting that

B>i W iBi −B>i W iXi(X
>WX)−1X>i W iBi = B>i W i(I −Hi)Bi,

with Hi = Xi(X
>WX)−1X>i W i. The aforementioned allows us to arrive at

γ̂1
i = (B>i W i(I −Hi)Bi)

−1B>i W i(Z
∗
i −Xiβ̂).

Noting that ri = Z∗i −Xiβ̂ = Di(Y i − µi), we obtain (C.1). Besides, from the
second equation in (C.3), it follows that

β̂1
∗ = β̂ + (X>WX)−1X>i W iBi(B

>
i W i(I −Hi)Bi)

−1B>i W iXiβ̂

− (X>WX)−1X>i W iBi(B
>
i W i(I −Hi)Bi)

−1B>i W iZi

= β̂ − (X>WX)−1X>i W iBi(B
>
i W i(I −Hi)Bi)

−1B>i W iri,

which makes it possible to verify (C.2). �

Remark C.2. An one-step approximation for the gradient-type test statistic, de-
noted as T 1

i , can be obtained using estimates given in Equations (C.1) and (C.2).

C.2. Connection between gradient and generalized Cook distances for
inference functions. First note that, due to the additivity of Ψn(θ) defined in
Equation (1) from manuscript, we have that

0 = Ψn(θ̂) =
n∑
j 6=i

Ψj(θ̂) + Ψi(θ̂) = Ψ(i)(θ̂) + Ψi(θ̂),

this leads to Ψ(i)(θ̂) = −Ψi(θ̂). Thus, we obtain the following one-step approxi-
mation

θ̂1
(i) = θ̂ − S−1(θ̂)Ψi(θ̂). (C.4)

It is noteworthy that by (C.4), we can write

TDi ≈ Ψ>i (θ̂)V −1(θ̂)S(θ̂)(θ̂ − θ̂1
(i))

= Ψ>i (θ̂)V −1(θ̂)Ψi(θ̂) = GDi,

where GDi is known as the generalized Cook distance for the inference functions
framework. That is, TD1

i defined as,

TD1
i = Ψ>i (θ̂)V −1(θ̂)S(θ̂)(θ̂ − θ̂1

(i)),

corresponds to a one-step approximation for TDi, i = 1, . . . , n.
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Remark C.3. It is easy to see that we can naturally extend the gradient distance
TDI , to evaluate the effect of a subset of m observations, I = {i1, i2, . . . , im}, with
appropriate modifications into the notation of the expressions defined in Section
3.2 from manuscript. Moreover, our proposal for the gradient distance defined
in Equation (6) generalises the influence measure introduced by Enea and Plaia
(2017). In fact, under the maximum likelihood framework, we have that V (θ) =
S(θ) = F(θ), with F(θ) the Fisher information matrix, which leads to

TDi = Ψ>i (θ̂)(θ̂ − θ̂(i)), i = 1, . . . , n,

whereas in that case Ψi(θ̂) corresponds to the score function associated to the ith
subject.

C.3. Equivalence of case-deletion and mean-shift outlier model in GEE.
In the following we focus on estimation in the mean-shift outlier model as well as on

the case-deletion method in the setting of GEE. Let β̂(i) be the estimate of β when

the ith subject (i.e. cluster) is removed from the dataset. The following proposition
establish the equivalence of the coefficient estimates for the case-deletion and mean-
shift outlier model in GEE.

Proposition C.4. For the mean-shift outlier model established in Equation (4) of

the manuscript with Bi = Ini
, we have that β̂1

∗ = β̂1
(i), where β̂1

∗ is given in (C.2)

and β̂1
(i) denotes the one-step approximation of β̂(i).

Proof. Consider the elements defined in Proposition C.1. When Bi = Ini , we have
that the one-step approximation given in (C.2), adopts the form:

β̂1
∗ = β̂ − (X>WX)−1X>i W i(I −Hi)

−1ri.

By Corollary 1.1 of Preisser and Qaqish (1996) and noting that W i(I −Hi)
−1 =

(W−1
i −Qi)

−1 with Qi = Xi(X
>WX)−1X>i , follows that β̂1

(i) = β̂1
∗ as desired.

�

Appendix D. Additional results

Table D.1. Parameter estimates, standard errors (in
parenthesis), p-values and percentage change in param-
eter estimates for GUIDE data using GEE.

Variable Full data Removed observations
8 44 64 86 88 122

Intercept -3.054 -2.656 -3.365 -3.405 -3.088 -3.504 -3.180
(0.959) (0.823) (1.028) (1.018) (0.958) (0.992) (1.018)
0.001 0.001 0.001 0.001 0.001 0.000 0.002

— -13.0% 10.2% 11.5% 1.1% 14.7% 4.1%

sex -0.745 -1.077 -0.760 -0.501 -0.735 -0.767 -0.748
(0.600) (0.560) (0.637) (0.575) (0.602) (0.625) (0.581)
0.214 0.054 0.233 0.384 0.222 0.220 0.198

— 44.5% 2.0% -32.8% -1.3% 2.9% 0.3%
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(continued)

Variable Full data Removed observations
8 44 64 86 88 122

age -0.676 -0.913 -0.782 -0.546 -0.671 -0.742 -0.698
(0.561) (0.577) (0.594) (0.588) (0.562) (0.567) (0.550)
0.228 0.114 0.188 0.353 0.233 0.190 0.204

— 35.1% 15.8% -19.2% -0.7% 9.9% 3.4%

accidents 0.392 0.458 0.391 0.408 0.395 0.427 0.376
(0.093) (0.099) (0.101) (0.098) (0.099) (0.098) (0.091)
0.000 0.000 0.000 0.000 0.000 0.000 0.000

— 16.9% -0.2% 4.2% 0.8% 8.9% -4.2%

severe 0.812 0.646 0.722 0.823 0.815 0.956 0.944
(0.359) (0.330) (0.351) (0.357) (0.360) (0.367) (0.395)
0.024 0.050 0.039 0.021 0.024 0.009 0.017

— -20.5% -11.1% 1.4% 0.3% 17.7% 16.2%

toilet 0.108 0.143 0.209 0.104 0.108 0.112 0.096
(0.099) (0.117) (0.100) (0.096) (0.099) (0.105) (0.097)
0.276 0.219 0.037 0.278 0.275 0.290 0.322

— 32.9% 93.9% -3.1% 0.5% 3.9% -10.5%

α̂ 0.093 0.086 0.102 0.103 0.078 0.031 0.104
— -7.4% 9.5% 10.7% -15.7% -66.3% 11.1%

det(CovEmp(β̂))
1 0.300 0.349 0.312 0.448 0.352 0.392 0.321

— 16.1% 4.0% 49.0% 17.1% 30.3% 7.0%

det(CovMB(β̂))
1 0.488 0.862 0.825 0.572 0.532 0.732 0.557

— 76.5% 68.9% 17.2% 9.0% 49.8% 14.1%
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Figure D.1. Cluster-level gradient distance for GUIDE data: (a)
full iterated and (b) one-step aproximation.
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Figure D.2. Observation-level influence measures for GUIDE
data: one-step approximation of (a) Cook’s distances D1

ij and (b)

Venezuela’s distances D1
ij,VBS.
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Figure D.3. Observation-level one-step approximations of test
statistics the null hipothesis H0 : γi = 0 for GUIDE data: (a)
gradient-type T 1

ij and (b) score-type R1
ij statistics.
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Appendix E. Real data example

Lima and Sañudo (1997) conducted a study to evaluate the learning process in a
certain manual task in which 40 volunteer subjects participated, who had 8 attempts
to perform the same task. The time difference between a subject received a stimulus
and the instant that a motor reaction occurred (in milliseconds) was recorded. The
observed data for each of the subjects (clusters) are displayed in Figure E.1

block

lo
g(

er
ro

r)

2.5

3.0

3.5

4.0

4.5

5.0

2 4 6 8

1 2

2 4 6 8

3 4

2 4 6 8

5 6

2 4 6 8

7 8

2 4 6 8

9 10

11 12 13 14 15 16 17 18 19

2.5

3.0

3.5

4.0

4.5

5.0

20
2.5

3.0

3.5

4.0

4.5

5.0

21 22 23 24 25 26 27 28 29 30

31

2 4 6 8

32 33

2 4 6 8

34 35

2 4 6 8

36 37

2 4 6 8

38 39

2 4 6 8

2.5

3.0

3.5

4.0

4.5

5.0

40

Figure E.1. Logarithm of the observed time difference between
attempts to perform a task, Lima and Sañudo (1997) dataset.

This dataset has been previously analyzed by Venezuela et al. (2007, 2011) who
assumed a Gaussian model with identity link function for the logarithm of the
response variable considering,

µij = x>ijβ, xij = (1, j)>, β = (β0, β1)>,

for i = 1, . . . , 40; j = 1, . . . , 8. The model was fitted using GEE with working corre-
lation matrix following AR(1) structure. Figure E.2 displays the Cook’s distances
based on Equations (7) and (8) from the main manuscript. Although this graph
suggests that the first attempt of individuals 1, 5, 33 and 39 are influential obser-
vations, the confirmatory analysis reported in Table E.1 reveals that their effect is
quite marginal and they do not produce any inferential change.
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Table E.1. Parameter estimates, standard errors (in
parenthesis), p-values and percentage change in parameter
estimates for Lima and Sañudo data using GEE.

Parameter Full data Removed observations
1,1 5,1 5,5 33,1 39,1

β0 3.8500 3.8299 3.8317 3.8519 3.8335 3.8349
(0.0665) (0.0644) (0.0694) (0.0667) (0.0613) (0.0640)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

— -0.52% -0.48% 0.05% -0.43% -0.39%

β1 -0.0513 -0.0481 -0.0483 -0.0511 -0.0487 -0.0489
(0.0101) (0.0095) (0.0104) (0.0101) (0.0094) (0.0099)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

— -6.27% -5.77% -0.26% -5.08% -4.67%

φ−1 0.1730 0.1687 0.1720 0.1707 0.1681 0.1698
— -2.47% -0.58% -1.33% -2.84% -1.84%

α 0.5309 0.5400 0.5440 0.5342 0.5269 0.5310
— 1.71% 2.46% 0.61% -0.76% 0.00%
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Figure E.2. Observation-level influence measures for Lima and
Sañudo data: (a) Cook’s distances and (b) Venezuela’s distances.

We should highlight the ability of the gradient-type statistic to determine that there
are no outliers in this dataset (see Figure E.3). Indeed, this is in agreement with
the results presented in Venezuela et al. (2007), who through a simulated envelope
reach the same conclusion. Additionally, we stress that the performance of the
gradient-type statistic is very similar to the type-score statistic (results not shown
here).
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Figure E.3. Observation-level gradient-type test statistics of null
hipothesis H0 : γi = 0 for Lima and Sañudo data.
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